,求直线的解析式.考点次函数综合题.分析已知的横坐标,即可知道的边上的高长,利用三角形的面积公式即可求解求得的面积,即可求得的坐标,利用待定系数法即可求得的解析式,把代入解析式即可求得的值根据,可以得到,则的坐标可以求得,利用待定系数法即可求得的解析式.解答解作⊥轴于,的横坐标是,则.•,•,即的坐标是,.设直线的解析式是,则,解得.则直线的解析式是.当时即则的坐标是设直线的解析式是,则,解得.则的解析式是.点评本题考查了三角形的面积与次函数待定系数求函数解析式的综合应用,正确求得的坐标是关键定义到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例如图,若,则点为的准外心.已知为直角三角形,斜边准外心在边上.求的长.自己画图考点勾股定理.专题新定义.分析先根据勾股定理求出的长度,根据准外心的定义,分三种情况,根据三角形的性质计算即可得解.解答解,若,设,则,解得,即.若,则.若,由图知,在中,不可能.综上可得或.点评本题考查了勾股定理,等腰三角形的性质,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论商家购进批时令水果,需天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制出函数图象,其中日销量千克与销售时间天之间的函数关系如图甲所示,销售单价元千克与销售时间天之间的函数关系如图乙所示.第天销售量是千克销售总额为元.求出与的函数关系式.若日销售量不低于的时间段为最佳销售期,则此销售过程中,最佳销售期共有多少天此期间最高单价为多少考点次函数的应用.专题销售问题.分析由与的函数图象可以得到各段的函数解析式,从而可以求得第天的销售量和销售总额由与的函数图象可以设出各段的函数解析式,再根据图象中的数据可以得到与的函数关系式由中的函数解析式可以得到日销售量不低于的时间段,由与的函数图象可以得到此期间最高单价是多少.解答解设时,与之间的函数解析式为,则,得,故时,与之间的函数解析式为,当时千克,此时的销售单价,故此时销售总额为元,故答案为.设时,与之间的函数解析式为,则,得,故时,与之间的函数解析式为,设时,与之间的函数解析式为,则解得故时,与之间的函数解析式为,由上可得,与之间的函数解析式为.令,得,则,令,得,则天由于的函数图象可知,当时,随的增大而减小,时,销售单价最高,设时,与之间的函数解析式为,则解得,时,与之间的函数解析式为,当时即最佳销售期共有天,此期间最高销售单价为.元千克.点评本题考查次函数的应用,解题的关键是明确题意,列出相应的函数解析式,利用数形结合的思想解答问题已知如图,在矩形中,⊥,垂足是.点是点关于的对称点,连接.求和的长若将沿着射线方向平移,设平移的距离为平移距离指点沿方向所经过的线段长度.当点分别平移到线段上时,直接写出相应的的值.如图,将绕点顺时针旋转个角,记旋转中的为,在旋转过程中,设所在的直线与直线交于点,与直线交于点.是否存在这样的两点,使为等腰三角形若存在,求出此时的长若不存在,请说明理由.考点几何变换综合题.专题压轴题.分析利用矩形性质勾股定理及三角形面积公式求解依题意画出图形,如答图所示.利用平移性质,确定图形中的等腰三角形,分别求出的值在旋转过程中,等腰有种情形,如答图所示,对于各种情形分别进行计算.解答解在中,由勾股定理得.••,.在中,由勾股定理得.设平移中的三角形为,如答图所示由对称点性质可知,.由平移性质可知,,,.当点落在上时,,,即当点落在上时,,,,,,又易知⊥,为等腰三角形,即.存在.理由如下在旋转过程中,等腰依次有以下种情形如答图所示,点落在延长线上,且,易知,,,.在中,由勾股定理得.如答图所示,点落在上,且,易知,,,,则此时点落在边上.,.在中,由勾股定理得,即,解得如答图所示,点落在上,且,易知.,,.,.,,.在中,由勾股定理得如答图所示,点落在上,且,易知.,,,.综上所述,存在组符合条件的点点,使为等腰三角形的长度分别为或.点评本题是几何变换压轴题,涉及旋转与平移变换矩形勾股定理等腰三角形等知识点.第问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论在计算过程中,注意识别旋转过程中的不变量,注意利用等腰三角形的性质简化计算.参与本试卷答题和审题的老师有守拙星期八张国明未来排名不分先后网月日理数有,等开方开不尽的数以及像.,等有这样规律的数的平方根是.考点平方根.专题计算题.分析根据平方根的定义,求数的平方根,也就是求个数,使得,则就是的平方根,由此即可解决问题.解答解,的平方根是.故答案为.点评本题考查了平方根的定义.注意个正数有两个平方根,它们互为相反数的平方根是负数没有平方根等腰三角形的个内角,则它的底角是.考点等腰三角形的性质.分析因为三角形的内角和为,所以只能为顶角,从而可求出底角.解答解为三角形的顶角,底角为.故答案为.点评本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解取.的近似值,若要求精确到.,则考点近似数和有效数字.分析根据近似数的精确度求解.解答解.精确到故答案为点评本题考查了近似数和有效数字经过四舍五入得到的数为近似数从个数的左边第个不是的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.般有,精确到哪位,保留几个有效数字等说法现有两根铁棒,它们的长分别是和,如果想焊个直角三角形的铁架,那么第三根铁棒长为.铁棒长为正整数考点勾股定理的逆定理.分析此题要分两种情况进行计算当直角边长为和,当为斜边长,条直角边长为.解答解当直角边长为和时,斜边长为不合题意舍去当为斜边长,条直角边长为,则另直角边长为.故答案为.点评此题主要考查了勾股定理的逆定理,关键是掌握要分情况进行讨论,不要漏解如图,,,请补充个条件,使≌.考点全等三角形的判定等式的性质等腰三角形的性质.专题压轴题开放型.分析,根据等式的性质求出,根据等腰三角形的性质得出,根据即可证出≌.解答解添加的条件是.理由是,,,,≌.故答案为.点评本题主要考查对全等三角形的判定,等腰三角形的性质,等式的性质等知识点的理解和掌握,能正确添加条件并能证出结论是证此题的关键如图,在平面直角坐标系中,已知点将绕坐标原点逆时针旋转至,则点的坐标是,.考点坐标与图形变化旋转.分析过点作⊥轴于,过点作⊥轴于,根据旋转的性质可得,利用同角的余角相等求出
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。