果阶段瞬态和稳态滤波器的输出。
这些参数的选择主要是基于种算法质量的权衡中所提到的适应性能。
我们提出了个自适应滤波器的性能改善的方法。
也就是说,我们提出了几个基于算法的不同参数的滤波器,并提供不同的适应阶段选择最合适的算法标准。
这种方法可以适用于所有的的算法,虽然我们在这里只考虑其中几个。
本文的结构如下,作者认为的的算法概述载于第节,第节提出了自适应算法的改进和组合标准,仿真结果在第节。
基于的算法让我们定义输入信号向量和矢量加权系数为权重系数向量计算应根据其中为算法步长是预期值的估计。
在中,常数表式误差,是个参考信号。
根据中不同的预期值估计在,我们可以得出种各种形式的自适应算法的定义,变步长算法和基本算法具有相同的形式,但在适应过程中步长是变化的,。
正在研究中的自适应滤波问题在于尝试调整权重系数,使系统的输出跟踪参考信号,中是个零均值与方差的高斯噪声,是最佳权向量维纳向量。
我们考虑两种情况是个常数固定的情况下,随时间变化非平稳的情况下。
在非平稳情况下,未知系统参数即最佳载体是随时间变化的。
我们假设变量可以建立模型为,它是随机独立的零均值,依赖于和自相关矩阵。
注意分析直接服从,如果,的条件是满足的,那么加权系数向量收敛于维纳解。
定义加权错位系数,,。
是因为这两个梯度噪声加权系数的平均值左右的变化和加权矢量滞后平均及最佳值的差额的影响,。
它可以表示为根据,是是加权系数的偏差,与方差是零均值的随机变量差,它取决于的算法类型,以及外部噪声方差。
因此,如果噪声方差为常数或是缓慢变化的,为特定的基于时间不变的算法。
在这个意义上说,在后面的分析中我们将假定只依赖算法类型,及其参数。
自适应滤波器的个重要性能衡量标准是其均方差的加权系数。
对于自适应滤波器,它被赋值,组合自适应滤波器合并后的自适应滤波器的基本思想是在两个或两个以上自适应算法并行实现与每个迭代之间的最佳选择,。
在每次迭代中选择最合适的算法,选择最佳的加权系数值。
最好的加权系数是,即在给定的时刻,向相应的维纳矢量值最接近。
让,是以基本算法为基础的第个加权系数,在瞬间选择参数和系数。
注意,现在我们可以在个统的处理方式≡,≡,≡下。
基于算法的行为主要依赖于,在每个迭代中有个最佳值,生产的最佳表现的自适应算法。
现在分析最小均方与些基于相同类型的算法相结合的自适应滤波器,但参数是不同的。
加权系数周围分布随机变量和,和方差,相关,。
中的概率κ依赖κ的值例如κ的高斯分布,κ两个规则。
置信区间的定义,,接着,从式到式我们认为只要,关于独立,这意味着,对于小偏差,置信区间对同的的算法是不同的,而对同的的算法则相交。
另方面,当偏置变大,然后中央位置的不同间隔距离很大,而且他们不相交。
由于我们对有关信息,没有先验知识,我们将使用种特定的统计学方法得到的标准,即自适应算法选择的值问题。
这个标准的平衡状态,从或同个数量级的,即。
提出的联合算法现在可以被总结为下面的步骤第步从不同预定义设置中为算法计算,。
第步估计每个算法的方差。
第步检查是否相交对于算法。
从个最大的差异值算法走向与差异较小的值。
根据,复杂度增加了。
这表明了各自增长了算法。
增加了对的补充和的讨论对于算法,其增加了乘法,的添加,以及决定至少。
这些值表明,虽然计算复杂但具有其独特的优势。
结论组合算法,在自适应系统中将这些参数变化的跟踪与算法的良好性能结果相结合,是自适应过程中选择的更好的算法,直到稳定状态时需要从最优值与最小方差算法的加权系数的偏差。
和取舍的标准,如果下式成立那么将会减少这个检查当,和以下关系成立,如果没有相交大偏差选择具有最大的方差的值算法。
如果相交,偏差已经很小。
因此,检查了对新的加权系数,或者,如果是最后对,只选择具有最小方差的算法。
首先两个区间不相交意味着实现了取舍标准,并选择最大方差算法。
第步转到下个瞬间。
元素的集合中最小的数。
在这种情况下,应提供良好的跟踪快速变化最大的差异,而其他应提供小的方差的稳定状态。
通过增加更多的观察,这两个极端之间,我们可以稍微改进算法的瞬态行为。
需要注意的是,只有未知值的差异。
在仿真中我们估计式当,和替代的方法是估计为有关表达式和在稳定状态为算法的不同类型,从已知文献中可以看出。
对于标准的算法在稳定状态,和是相关的。
,需要注意的是,任何其他估计对于滤波器来说是有效的。
的复杂性取决于组成算法第步,并在决策算法步骤。
加权系数的计算并未使并行算法增加计算时间,因为它是由硬件实现并行执行的,从而增加了硬件要求。
方差估计步骤,忽略了有助于提高算法的复杂性,因为他们是刚刚开始的时候,他们正在使用单独适应硬件实现。
简单的分析表明,在增加最多的操作步骤,添加了−和−决定增补,而且需要添加些硬件以满足组成算法。
组合自适应滤波器举例考虑由两个不同步骤的算法相结合的系统鉴定。
在这里,参数是,即。
未知的系统有四个时间不变系数,而且滤波器的。
我们给个人平均为方差算法,以及它们的结合,如图所示。
结果,获得了平均超过蒙特卡罗方法个独立的运行,其中。
它引用了未知损坏不相关零均值高斯噪声,其中κ在最初的次迭代的方差估计根据式和的加权来计算的系数。
图中提出,第次使用的与的,然后在稳定状态,与的。
需要注意的是第和第迭代,该算法可以采取任何步长根据不同的认识。
在这里,将通过增加计算量与并行算法都得到改善,同时还认为,在稳定状态下,不能理想的接近小步长的算法,原因是该方法的统计特性。
,组合自适应滤波器能够达到更好的性能如该独径大流量大压差的场合。
当时,通常都由蝶阀来完成。
球阀型球阀全开时为无阻阀,自洁性能最佳,适用于特别不干净含纤维介质的两位切断场合。
形球阀具有近似等百分比的调节特性,适用于不干净含纤维介质可调比较大的控制场合。
球阀的价格较贵。
偏心旋转阀该阀介于蝶阀和球阀之间,自洁性能好调节性能好亦可切断,故适用于不干净介质泄漏要求小的调节场合,但该阀价格较贵。
这类产品中前种为直行程控制阀,后种为角行程控制阀。
虽然本设计是加料系统,但也要考虑到下料部分,因为生产中下料都是依靠其自重来下料的,所以本课题选择直通单座控制阀和球阀两种使用,且用气缸带动,气缸上用限位开关来反馈气缸的状态。
下图为各种型号的电磁阀。
图各种型号的电磁阀接近开关的选型电感式接近开关电感式接近开关工作原理。
电感式接近开关由三大部分组成振荡器开关电路及放大输出电路。
振荡器产生个交变磁场。
当金属目标接近这磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。
振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。
霍尔接近开关霍尔接近开关工作原理是当块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势,其表达式为其中为霍尔系数,为薄片中通过的电流,为外加磁场洛伦慈力的磁感应强度,是薄片的厚度。
由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。
霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。
霍尔开关的输入端是以磁感应强度来表征的,当值达到定的程度如时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。
输出端般采用晶体管输出,和其他传感器类似有常开型常闭型锁存型双极性双信号输出之分。
霍尔开关具有无触电低功耗长使用寿命响应频率高等特点,内部采用环氧树脂封灌成体化,所以能在各类恶劣环境下可靠的工作。
霍尔开关可应用于接近传感器压力传感器里程表等,作为种新型的电器配件。
线性接近传感器的原理。
工作原理线性接近传感器是种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器情和很高的积极性,更有幸得李霞老师及同组同学多方帮助,使得设计能顺利完成,圆满结束了三年的大学生活。
再次感谢李霞老师长期以来悉心的指导和不厌其烦的耐心讲解,在设计过程中提供的大量资料修改意见及多次的参观机会,为日后的工作和更进步的学习打下了坚实的基础,也积累了许多宝贵的设计经验。
感谢同组同学的默契配合,我从他们身上也学到了不少东西。
同样感谢三年来给予我支持和帮助的所有老师和同学。
附录基于的自动加料系统主电路图附录自动加料系统外部接线图附录基于的自动加料系统主程序果阶段瞬态和稳态滤波器的输出。
这些参数的选择主要是基于种算法质量的权衡中所提到的适应性能。
我们提出了个自适应滤波器的性能改善的方法。
也就是说,我们提出了几个基于算法的不同参数的滤波器,并提供不同的适应阶段选择最合适的算法标准。
这种方法可以适用于所有的的算法,虽然我们在这里只考虑其中几个。
本文的结构如下,作者认为的的算法概述载于第节,第节提出了自适应算法的改进和组合标准,仿真结果在第节。
基于的算法让我们定义输入信号向量和矢量加权系数为权重系数向量计算应根据其中为算法步长是预期值的估计。
在中,常数表式误差,是个参考信号。
根据中不同的预期值估计在,我们可以得出种各种形式的自适应算法的定义,变步长算法和基本算法具有相同的形式,但在适应过程中步长是变化的,。
正在研究中的自适应滤波问题在于尝试调整权重系数,使系统的输出跟踪参考信号,中是个零均值与方差的高斯噪声,是最佳权向量维纳向量。
我们考虑两种情况是个常数固定的情况下,随时间变化非平稳的情况下。
在非平稳情况下,未知系统参数即最佳载体是随时间变化的。
我们假设变量可以建立模型为,它是随机独立的零均值,依赖于和自相关矩阵。
注意分析直接服从,如果,的条件是满足的,那么加权系数向量收敛于维纳解。
定义加权错位系数,,。
是因为这两个梯度噪声加权系数的平均值左右的变化和加权矢量滞后平均及最佳值的差额的影响,。
它可以表示为根据,是是加权系数的偏差,与方差是零均值的随机变量差,它取决于的算法类型,以及外部噪声方差。
因此,如果噪声方差为常数或是缓慢变化的,为特定的基于时间不变的算法。
在这个意义上说,在后面的分析中我们将假定只依赖算法类型,及其参数。
自适应滤波器的个重要性能衡量标准是其均方差的加权系数。
对于自适应滤波器,它被赋值,组合自适应滤波器合并后的自适应滤波器的基本思想是在两个或两个以上自适应算法并行实现与每个迭代之间的最佳选择,。
在每次迭代中选择最合适的算法,选择最佳的加权系数值。
最好的加权系数是,即在给定的时刻,向相应的维纳矢量值最接近。
让,是以基本算法为基础的第个加权系数,在瞬间选择参数和系数。
注意,现在我们可以在个统的处理方式≡,≡,≡下。
基于算法的行为主要依赖于,在每个迭代中有个最佳值,生产的最佳表现的自适应算法。
现在分析最小均方与些基于相同类型的算法相结合的自适应滤波器,但参数是不同的。
加权系数周围分布随机变量和,和方差,相关,。
中的概率κ依赖κ的值例如κ的高斯分布,κ两个规则。
置信区间的定义,,接着,从式到式我们认为只要,关于独立,这意味着,对于小偏差,置信区间对同的的算法是不同的,而对同的的


























1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。
