ppt TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读 ㊣ 精品文档 值得下载

🔯 格式:PPT | ❒ 页数:17 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2025-08-18 10:48

习题等角对等边的应用例求证如果三角形个外角的平分线于三角形的边,那么这个三角形是等腰三角形已知是的外角,,求证练习如图,把张矩形练习题书第题如图,在中,求和的度数练习册例等腰三角形的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练,,设,则则在中,解得在中,,角的三角形是直角三角形。


例如图,在中点在上,且,求各角的度数。


等边对等角的应用解,又角形。


等边三角形三边相等。


三个角相等,每个角度。


有个角是度的三角形是等边三角形。


三个角相等的三角形是等边三角形。


直角三角形两个锐角互余。


两直角边互相垂直。


度角所对的直角边等于斜边的半。


有个角是直形和等边三角形性质和判定方法进行归纳和总结。


利用等腰三角形和等边三角形性质和判定方法进行些计算和证明。


复习目标三角形性质判定等腰三角形等边对等角。


三线合。


等角对等边。


定义两边相等的三角形是等要三腰三角形如图,在中,和的平分线交于点,过作求的周长作业第十三章轴对称复习课第二课时在回顾和思考中,对等腰三角中,的垂直平分线交于点,交于点求证练习作业在中,和的平分线交于点,过作写出图中所有的等,,是腰上的高求的长练习如图,是房梁的部分,其中⊥,点是的中点,⊥,垂足为,求,的长在,所以结论正确练习书第题如图,和都是等边三角形求证方法证明和所在的三角形全等。


直角三角形性质的应用例如图,在中,已知他们得出个结论池塘最长处不小于。


他们的结论对吗解,把张矩形的纸沿对角线折叠,重合的部分是个等腰三角形吗为什么方法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次测量活动中,测得是多少练习题等角对等边的应用例求证如果三角形个外角的平分线于三角形的边,那么这个三角形是等腰三角形已知是的外角,,求证练习如图,法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次测量活动中,测得的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数分线于三角形的边,那么这个三角形是等腰三角形已知是的外角,,求证练习如图,把张矩形的纸沿对角线折叠,重合的部分是个等腰三角形吗为什么方,,求和的度数练习册例等腰三角形的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练习题等角对等边的应用例求证如果三角形个外角的平则在中,解得在中,,练习题书第题如图,在中则在中,解得在中,,练习题书第题如图,在中,求和的度数练习册例等腰三角形的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练习题等角对等边的应用例求证如果三角形个外角的平分线于三角形的边,那么这个三角形是等腰三角形已知是的外角,,求证练习如图,把张矩形的纸沿对角线折叠,重合的部分是个等腰三角形吗为什么方法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次测量活动中,测得的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练习题等角对等边的应用例求证如果三角形个外角的平分线于三角形的边,那么这个三角形是等腰三角形已知是的外角,,求证练习如图,把张矩形的纸沿对角线折叠,重合的部分是个等腰三角形吗为什么方法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次测量活动中,测得他们得出个结论池塘最长处不小于。


他们的结论对吗解,,所以结论正确练习书第题如图,和都是等边三角形求证方法证明和所在的三角形全等。


直角三角形性质的应用例如图,在中,已知,,是腰上的高求的长练习如图,是房梁的部分,其中⊥,点是的中点,⊥,垂足为,求,的长在中,的垂直平分线交于点,交于点求证练习作业在中,和的平分线交于点,过作写出图中所有的等腰三角形如图,在中,和的平分线交于点,过作求的周长作业第十三章轴对称复习课第二课时在回顾和思考中,对等腰三角形和等边三角形性质和判定方法进行归纳和总结。


利用等腰三角形和等边三角形性质和判定方法进行些计算和证明。


复习目标三角形性质判定等腰三角形等边对等角。


三线合。


等角对等边。


定义两边相等的三角形是等要三角形。


等边三角形三边相等。


三个角相等,每个角度。


有个角是度的三角形是等边三角形。


三个角相等的三角形是等边三角形。


直角三角形两个锐角互余。


两直角边互相垂直。


度角所对的直角边等于斜边的半。


有个角是直角的三角形是直角三角形。


例如图,在中点在上,且,求各角的度数。


等边对等角的应用解,又,,设,则则在中,解得在中,,练习题书第题如图,在中,求和的度数练习册例等腰三角形的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练习题等角对等边的应用例求证如果三角形个外角的平分线于三角形的边,那么这个三角形是等腰三角形已知是的外角,,求证练习如图,把张矩形的纸沿对角线折叠,重合的部分是个等腰三角形吗为什么方法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次,,求和的度数练习册例等腰三角形的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练习题等角对等边的应用例求证如果三角形个外角的平法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次测量活动中,测得的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数把张矩形的纸沿对角线折叠,重合的部分是个等腰三角形吗为什么方法等角对等边方法二三角形全等书第题。


练习等边三角形的性质和判定的应用例如图,课外兴趣小组在次测量活动中,测得,所以结论正确练习书第题如图,和都是等边三角形求证方法证明和所在的三角形全等。


直角三角形性质的应用例如图,在中,已知中,的垂直平分线交于点,交于点求证练习作业在中,和的平分线交于点,过作写出图中所有的等形和等边三角形性质和判定方法进行归纳和总结。


利用等腰三角形和等边三角形性质和判定方法进行些计算和证明。


复习目标三角形性质判定等腰三角形等边对等角。


三线合。


等角对等边。


定义两边相等的三角形是等要三角的三角形是直角三角形。


例如图,在中点在上,且,求各角的度数。


等边对等角的应用解,又练习题书第题如图,在中,求和的度数练习册例等腰三角形的顶角大于,如果过它的顶点做条直线,将它分成两个等腰三角形,则的度数是多少练

下一篇
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第1页
1 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第2页
2 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第3页
3 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第4页
4 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第5页
5 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第6页
6 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第7页
7 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第8页
8 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第9页
9 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第10页
10 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第11页
11 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第12页
12 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第13页
13 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第14页
14 页 / 共 17
TOP25人教版数学八上第十三章轴对称(复习课)PPT课件2.ppt文档免费在线阅读第15页
15 页 / 共 17
温馨提示

1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
筛选: 精品 DOC PPT RAR
小贴士:
  • 🔯 当前文档为PPT文档,建议你点击PPT查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批