ppt TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读 ㊣ 精品文档 值得下载

🔯 格式:PPT | ❒ 页数:42 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2022-06-24 23:03

TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读

,解析答案已知函数,若与在处相切,求的表达式解由已知得又令,解得或因为不在的定义域,内,故舍去当,时故在,内为增函数综上,的单调增区间为,,单调减区间为,由在点,处的切线垂直于直线知,解得解析答案求函数的单调区间解由知,则的单调递减区间为解析答案已知函数,其中,且曲线在点,处的切线垂直于直线求的值解对求导得析答案已知,函数,若在,上是单调减函数,则的取值范围是解析答案函数的图象如图,则函数解析答案函数的单调递减区间为解析函数的定义域是,,且,令,解得,所以单调递减区间是解的减区间为,则的大小关系为又,且,因此有,即有充要条件是对任意的,都有且在,内的任非空子区间上不恒为零,应注意此时式子中的等号不能省略,否则漏解注意两种表述“函数在,上为减函数”与“函数的解区间,并注意定义域含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决方法与技巧为增函数的后消去,对进行分类讨论确定的符号思想与方法系列分类讨论思想研究函数的单调性思维点拨解析答案返回温馨提醒思想方法感悟提高已知函数解析式求单调区间,实质上是求其中函数的图象在点,处的切线平行于轴确定与的关系若,试讨论函数的单调性思维点拨依据的切线条件可得得,关系,代,处的切线与直线垂直,求的值跟踪训练解析答案若在,上是单调函数,求实数的取值范围解析答案返回思想与方法系列典例分已知函数,解析答案思维升华解由,得已知函数若在点围解由引申探究知在,上为减函数,的范围是若在,上为增函数,可知在,上恒成立,又的值域为的范围是,即解析答案函数在,上单调时,的取值范围是,,,故在,上不单调,实数的取值范围是,若在,上不单调,求的取值范在,内为减函数,如何求解引申探究解析答案若的单调减区间为求的值解的单调减区间为,是的两个根,使不等式成立,即,时,当且仅当即时等号成立所以满足要求的的取值范围是,解析答案在本例中,若使不等式成立,即,时,当且仅当即时等号成立所以满足要求的的取值范围是,解析答案在本例中,若在,内为减函数,如何求解引申探究解析答案若的单调减区间为求的值解的单调减区间为,是的两个根即解析答案函数在,上单调时,的取值范围是,,,故在,上不单调,实数的取值范围是,若在,上不单调,求的取值范围解由引申探究知在,上为减函数,的范围是若在,上为增函数,可知在,上恒成立,又的值域为的范围是,,解析答案思维升华解由,得已知函数若在点,处的切线与直线垂直,求的值跟踪训练解析答案若在,上是单调函数,求实数的取值范围解析答案返回思想与方法系列典例分已知函数其中函数的图象在点,处的切线平行于轴确定与的关系若,试讨论函数的单调性思维点拨依据的切线条件可得得,关系,代后消去,对进行分类讨论确定的符号思想与方法系列分类讨论思想研究函数的单调性思维点拨解析答案返回温馨提醒思想方法感悟提高已知函数解析式求单调区间,实质上是求的解区间,并注意定义域含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决方法与技巧为增函数的充要条件是对任意的,都有且在,内的任非空子区间上不恒为零,应注意此时式子中的等号不能省略,否则漏解注意两种表述“函数在,上为减函数”与“函数的减区间为,则的大小关系为又,且,因此有,即有,解析答案函数的单调递减区间为解析函数的定义域是,,且,令,解得,所以单调递减区间是解析答案已知,函数,若在,上是单调减函数,则的取值范围是解析答案函数的图象如图,则函数的单调递减区间为解析答案已知函数,其中,且曲线在点,处的切线垂直于直线求的值解对求导得,由在点,处的切线垂直于直线知,解得解析答案求函数的单调区间解由知,则令,解得或因为不在的定义域,内,故舍去当,时故在,内为增函数综上,的单调增区间为,,单调减区间为,解析答案已知函数,若与在处相切,求的表达式解由已知得又解析答案即在,上恒成立,若在,上是减函数,求实数的取值范围解在,上是减函数在,上恒成立则,,,,故实数的取值范围是,解析答案设函数在区间,上单调递减,则实数的取值范围是解析,当时,有且,解得解析答案解析答案,分别是定义在上的奇函数和偶函数,当时,且,则的解集为若函数在,上存在单调递增区间,则的取值范围是解析对求导,得当,时,的最大值为令,解得所以的取值范围是,,解析答案由得函数的两个极值点为和,已知函数在区间,上不单调,则的取值范围是解析由题意知,则只要这两个极值点有个在区间,内,函数在区间,上就不单调,由或,得或,,解析答案函数讨论函数的单调性解析答案解析答案返回若函数在区间,上是增函数,求的取值范围导数的应用课时导数与函数的单调性内容索引题型不含参数的函数的单调性题型二含参数的函数的单调性题型三利用函数单调性求参数思想与方法系列练出高分思想方法感悟提高题型不含参数的函数的单调性题型不含参数的函数的单调性例求函数的单调区间解函数的定义域为,当,即时,函数单调递减故函数的单调递增区间为单调递减区间为,因为,所以解析答案思维升华跟踪训练解析答案返回已知定义在区间,上的函数,则的单调递增区间是解析令,则其在区间,上的解集为,和即的单调递增区间为,和,,和,题型二含参数的函数的单调性题型二含参数的函数的单调性解析答案例已知函数当时,求曲线在点,处的切线方程解当时此时,又因为,所以切线方程为,整理得解析答案思维升华当时,讨论的单调性讨论函数的单调性跟踪训练解析答案返回题型三利用函数单调性求参数例设函数,曲线在点,处的切线方程为求,的值解,由题意得,,即,题型三利用函数单调性求参数解析答案若,求函数的单调区间解由得,当,时,当,时,所以函数的单调递增区间为,,单调递减区间为,解析答案设函数,且在区间,内存在单调递减区间,求实数的取值范围解,依题意,存在使不等式成立,即,时,当且仅当即时等号成立所以满足要求的的取值范围是,解析答案在本例中,若在,内为减函数,如何求解引申探究解析答案若的单调减区间为求的值解的单调减区间为,是的两个根即解析答案函数在,上单调时,的取值范围是,,,故在,上不单调,实数的取值范围是,若在,上不单调,求的取值范围解由引申探究知在,上为减函数,的范围是若在,上为增函数,可知在,上恒成立,又的值域为的范围是,,解析答案思维升华解由,得已知函数若在点,在,内为减函数,如何求解引申探究解析答案若的单调减区间为求的值解的单调减区间为,是的两个根,围解由引申探究知在,上为减函数,的范围是若在,上为增函数,可知在,上恒成立,又的值域为的范围是,处的切线与直线垂直,求的值跟踪训练解析答案若在,上是单调函数,求实数的取值范围解析答案返回思想与方法系列典例分已知函数,后消去,对进行分类讨论确定的符号思想与方法系列分类讨论思想研究函数的单调性思维点拨解析答案返回温馨提醒思想方法感悟提高已知函数解析式求单调区间,实质上是求,充要条件是对任意的,都有且在,内的任非空子区间上不恒为零,应注意此时式子中的等号不能省略,否则漏解注意两种表述“函数在,上为减函数”与“函数解析答案函数的单调递减区间为解析函数的定义域是,,且,令,解得,所以单调递减区间是解的单调递减区间为解析答案已知函数,其中,且曲线在点,处的切线垂直于直线求的值解对求导得令,解得或因为不在的定义域,内,故舍去当,时故在,内为增函数综上,的单调增区间为,,单调减区间为

下一篇
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第1页
1 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第2页
2 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第3页
3 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第4页
4 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第5页
5 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第6页
6 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第7页
7 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第8页
8 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第9页
9 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第10页
10 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第11页
11 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第12页
12 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第13页
13 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第14页
14 页 / 共 42
TOP63【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时1 导数与函数的单调性课件 文.ppt文档免费在线阅读第15页
15 页 / 共 42
温馨提示

1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • 文档助手,定制查找
    精品 全部 DOC PPT RAR
换一批