均需要达到燃料和空气的强烈混合。
燃烧前期,除了次风外的其他供风应在燃烧室前端就能与燃油喷雾均匀而强烈的混合,空燃比满足燃料的可燃极限。
气流的扩散角度应小于燃油雾化角度,以使空气能够切入油雾,与燃油掺混。
要达到这目的,通常采用气流与喷雾射流交叉流动或者组织旋流“卷吸”燃料。
在燃烧后期的火焰扩展过程中,燃料与空气的混合也应该强烈,以保证燃烧充分,这也要求较高的二次或三次风流速。
在距离喷嘴定距离处应该组织个高温燃气的回流区,以使火焰稳定。
该回流区的流速应该与火焰传播速度相适应才能既保证稳焰又不将火焰吹灭,因此通常为低速回流区。
.燃烧稳焰原理及措施为了使火焰稳定,必须有个稳定的着火热源。
燃烧室内部必须要有个低速区,该区域的气流速度与火焰传播速度接近,才能确保火焰稳定燃烧。
气体流速过高会造成脱火,即火焰被吹灭反之,会造成回火凹引。
因此,任何种燃烧装置都需要设计相应的稳焰结构。
稳焰措施如下直流环状射流稳焰即在燃烧筒内放置块挡板使气流在挡板后形成低速回流区,其流场为环状喷出流束包围着的个负压区,气流呈涡旋状态。
此种类型的稳焰器有平板型和锥型。
旋转环状射流稳焰是由于流束中心位置的诱导流股不足,而产生负压环流区。
该形式的旋流可以通过蜗壳式配风器或切向叶片旋流器产生,而且可以通过改变旋流器的旋度而形成不同大小和旋度的回流区。
同轴射流稳焰它是在环形射流内侧,中心射流外侧,两股射流边界层的连接处,产生两个旋转方向相反的涡流。
同轴射流产生的关键是两股射流要有速度差。
反向射流稳焰是由两股逆向射流形成低速回流区。
但是反向射流稳焰技术尚处于试验研究阶段,还未推广使用。
.助燃空气调整在允许的范围内增加次风供风量有助于缩短火焰,这是因为增加了燃烧初期参与燃烧的燃料的比重,缩短了火焰传播距离。
这可以通过增大次风进气孔或者增加孔数来实现。
增强助燃空气的旋流度是非常有效的缩短火焰长度的措施,这可以通过改变切向进气孔的布置来实现。
不过助燃空气旋流程度也不能太大,否则气流扩张角过大,不利于与燃油喷雾的混合,还会造成过大的压力损失。
般车辆加热器功率的计算方法按交通部营运客车类型划分及等级评定,乘客人均采暖量千焦小时。
丹东黄海客车额定乘员含驾驶员人,则所需加热器发热量千焦小时.。
汽车加热器功率的计算方法由于车辆散热部位较多,外部环境差别较大,热量损失的计算比较复杂,国内厂家在为车辆选配加热器时,往往根据国外类似车型配备加热器功率的大小或按客车等级评定人均取暖量要求,估计确定。
由于实际车辆在车速范围车厢保温材料以及车厢密封情况等的差别,往往会造成加热器选配不合理不科学的问题,因此通过计算分析,得出不同车辆配备加热器的通用公式,将是极有意义的。
车辆运行时,加热器主要为加热车厢中的空气提供热量,要在克服通过车辆外表向外界环境散热的同时,使车厢内空气温度保持在个合理的范围内,这时的热平衡关系可表示为其中为加热器功率为空气的定压比热是客车内部的空气质量为客车的内外温差为当量散热面积,和分别为车厢的内外散热面积是加热时间是厢体的总传热系数•厢体的总传热系数由下式计算是车厢的传热系数,公式为式中为厢体内壁散热系数,••,为厢体外壁散热系数,与车速有关,当车速为㎞,••,为汽车厢体隔热材料厚度,为汽车厢体隔热材料传热系数•代表因车厢漏气而影响散热量所对应的传热系数由以上关系可确定加热器功率。
表.计算参考参数丹东黄海客车外形尺寸车外外形尺寸车内外部散热面积内部散热面积玻璃窗面积玻内外最大温差加热时间车速㎞车窗玻璃散热量玻•玻••式中玻玻璃窗的传热系数般取玻••玻玻璃窗的面积车内外最大温差加热时间将表.中所给值代入式计算得车壁散热量车壁散热量的计算式为•••为计算方便可将全部壁面都简单地按多层均匀平壁计算由表.和式可得当量散热面积不包括车窗玻璃,.己知所选隔热材料聚苯乙烯泡沫塑料的厚度为.,为.••由前面己知厢体内壁散热系数••在车速时取厢体外壁散热系数••将以上已知数值代入式可得车厢的传热系数为.••再将值代入式得厢体总传热系数为••车壁散热损失为••••室内空气温升所需热量••式中为空气比热,.•为车内空气质量,为温差,其中车内空气质量用密度.与体积的乘积计算,考虑新风换热,每人所需新风量为,总空气体积为为车室内空气体积.为新风量,分钟的进风量为.,将以上各值代入式得••则所需热量为需若需要分钟加热到设定温度,其所需加热器功率为需.小结以上给出了车内空间加热的加热器功率选择的计算方法,实际计算结果比按营运客车类型划分及等级评定计算出的结果较大,营运客车类型划分及等级评定选择的加热器功率并不能满足车辆取暖要求,实际加热时间要大于分钟,在实际应用中需要等待温升的时间较长,因此汽车加热器的选择需要根据具体车离心式采用低压油泵将燃油滴落到高速旋转的甩油盘上,利用离心力将燃油雾化并与空气混合燃烧。
离心式加热器由于离心雾化油滴较大,且部分油滴先甩到甩油盘外围的石棉网上,再蒸发参与燃烧,因此其燃烧室单位体积的热功率会低于喷雾式加热器,离心式适合于的中等热功率的加热器。
同时油滴直径受到甩油盘的转速影响,容易随电机转速而产生波动,从而导致加热器的工作状态不稳定,存在低温启动困难和排放较高等问题,应用较少。
蒸发雾化式加热器的结构比较简单,般采用流量很小的低压电磁泵将燃油输送到燃烧室头部的燃油吸附网上,燃油受热蒸发后被助燃空气卷吸进燃烧室参与燃烧。
缺点是热功率较小,同时由于蒸发混合不均匀,局部燃油过浓,容易将燃油吸附网堵死并导致燃烧室积炭。
.车用加热器的用途低温起动柴油发动机在低温环境中冷起动比较困难,在时采用常规手段几乎不能起动,而装配加热器后可保证发动机在低温环境下顺利可靠地起动,这对于冬季或高原严寒地区的车辆起动具有重要的意义。
发动机经加热器预热后,可提高气缸活塞活塞环及各摩擦副和机油温度,由此能大大降低启动阻力。
例如在时,型发动机预热后其发动机的热态启动阻力矩为.,而进行冷启动时的阻力矩则为.,热态启动时发动机的阻力矩下降,启动转速增加,因被预热的机体对所进冷空气也有定的加热作用,从而提高了缸内气体压缩终了的温度和压力另外,加热器还可以加热蓄电池,从而提高蓄电池的输出功率,以增加起动电机的启动力矩,提高发动机启动转速。
总之,装配加热器对发动机预热后,发动机在低温条件下的启动较为容易。
采暖采暖是加热器的主要用途,是加热器研制的初衷,在低温或潮湿阴冷环境中,车辆运行时需要向车厢内供暖,些专用运输车也需配置保温设施,由于加热器的体积小,结构紧凑,热效率高,因此采用独立式燃油加热器是最佳选择。
目前加热器主要用于轿车,客车,以及花卉鲜活鱼类等的运输车。
此外,可结合特殊用途的需要,将加热器应用到军事灭菌车救护车等车辆上,同时还可为野外帐篷供暖,由于体积小适合单兵携带,因此在军事上有着广泛的应用前景。
除霜冬季当环境温度较低时,车内由于人呼吸等原因产生的温度相对较高的水蒸汽容易使汽车驾驶室前风挡玻璃处结霜,影响司机视线,导致交通事故的发生。
加热器提供的热气可以使前风挡玻璃处形成道热风幕,防止霜的形成,提高驾驶的安全性。
减少机件之间的摩擦力,延缓零件损坏发动机启动磨损主要由分子机械磨损和腐蚀机械磨损引起。
分子机械磨损指金属表面相互接触,发生相当运动时在金属零件表面发生的类似于金属切削的磨损。
腐蚀机械磨掼是指发动机在低热状态工作,水蒸汽凝结在气缸壁上,其中溶有的酸气引起的磨损.发动机预热后,能够缩短形成油膜润滑所需的时间,使分子机械磨损量减小。
另方面,对发动机进行预热后,可以缩短发动机温度升高所需的时间,从而减少了腐蚀机械磨损量。
降低汽车冷起动时的有害排放发动机冷起动时由于气缸壁和燃烧室壁面温度低,燃油雾化质量差以及多个循环后才着火等系列因素,使得发动机起动后及随后段时间内排气中有害物和微粒的捧放浓度比正常工作时高出几十倍,而采用加热器预热后,能够提高缸壁温度,改善雾化质量,减少着火前的空循环次数,显著降低上述污染物的排放量。
这些要求将随着我们的机械制造水平的提高而得以实现。
燃烧排放方面国内研制的加热器总体排放不高,但部分产品尤其是蒸发雾化式存在燃烧室积炭的现象,热效率也有定的提高空间。
今后需要在助燃空气流动组织和燃油雾化方面不断改进,如合理高效的助燃空气导流结构,各级进气孔的布置方案,研究新的燃油雾化方法等。
另外还可以改进换热器的结构,通过提高高温燃气与换热介质水或者空气的换热效率来提高加热器的总体热效率。
换热器的结构改进主要包括换热片的形状和布置方式,但燃气在其中的流动阻力不能太大,否则排气不畅,导致燃烧恶化。
总之,提高燃烧器的燃烧效率和降低排放关键要在燃烧器结构和燃油雾化混合上做文章,以上各方面有望借助于新兴的数值模拟技术结合先进的试验手段较快地实现,本次的汽车加热器燃烧器设计和燃烧雾化结构分析及改进就是遵循这样种思路完成的。
.课题主要研究内容本设计基于河北宏业系列燃油加热器为研究对象。
首先对加热器进行了原理分析,并对黄海客车车厢热负荷计算合理匹配加热器,以摸清这些因素对加热器性能的影响,合理选择水泵高压油泵合理的进风量,然后对加热器进行了尺寸调研分析,换热管的方案分析设计了不同规格的尾气换热器并进行了试验对不同情况的加热器安装方案进行分析对油嘴分别进行了不同喷油角度不同喷油锥体不同喷油量的分析,优化它们对加热器性能的最佳影响情况。
最后对加热器所产生的燃烧污染物进行分析处理提出建议。
第章车用加热器简介车用加热器历经近百年的发展,经历了几个不同的发展阶段,从最初的余热式到现在的独立燃烧式,产品种类越来越丰富,技术也越来越先进。
汽车供暖设备按所使用的热源可分为非独立式供暖系统和独立式供暖系统。
非独立式供暖系统也称余热式供暖系统,热量来自于汽车发动机的冷却热水或废气。
独立式供暖系统即汽车加热器的工作独立于发动机,有自己单独的供风供油和控制装置。
目前,国内加热器也逐渐成熟,形成了多个品牌,多种系列的产品。
.车用加热器工作原理车用加热器主要由五部分组成,包括控制系统燃料供给系统配风系统燃烧系统和热交换系统。
控制系统的功能是通过着火传感器水温传感器等各种传感器的信号,控制加热器的点火熄火过程,实现加热器的过热保护,并控制受热体燃烧室及换热介质的温度.燃料供给系统的作用是通过油泵将燃料以喷雾或燃油蒸汽的形式提供到燃烧室中。
配风系统主要由风扇和电机组成,其作用是配合燃烧室的形状以及燃料燃烧方式,提供助燃空气,使空气在进入燃烧室时具有定的速度和紊流度来优化组织燃烧,保证燃烧的稳定性和连续性。
燃烧系统是燃料和空气混合并燃烧的场所,由燃烧室和点火装置组成。
燃烧室的结构及大小因功率和燃料供给方式的不同而不同.点火装置般是点火电极的作用是在加热器起动时迅速点燃可燃混合物。
换热系统作为加热器的重要组成部分,其作用是将燃料燃烧产生的热量传递到换热介质中。
换热介质再通过管路将热量释放到应用场合。
工作过程加热器启动时,风扇电机和水泵电机接通电源,带动助燃空气风扇和循温冷起动时预热发动机等。
加热器的取暖除霜功能提高了乘车的舒适性和行车安全性。
低温环境下预热发动机,则解决了低温起动难起动慢的问题,同时还能有效地降低低温冷起动过程的排放,减少发动机冷起动磨损延长发动机使用寿命提高发动机燃油经济性等。
基于以
本资源为压缩包,下载后将获得以下所有文档,dwg格式为CAD图纸,展示的仅是截图,下载后图纸原稿无水印可编辑。
(图纸)
变速器装配图.dwg
(其他)
丹东黄海客车独立采暖系统设计论文.doc
(图纸)
丹东黄海客车独立采暖系统总图.dwg
(图纸)
几种热交换器的改进方案.dwg
(其他)
论文.pdf
(其他)
前封面模版.doc
(图纸)
热交换体.dwg
(其他)
任务书.doc
(图纸)
三种安装方案.dwg
(图纸)
输入轴.dwg
(图纸)
输入轴一档齿轮.dwg
(其他)
英文摘要.doc
(其他)
中文摘要.doc







