式中汽车满载时个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车最大加速时的负荷增加量,在此取轮胎与地面的附着系数,在此取.轮胎的滚动半径,在此取.按上式在现代汽车的设计中,由于材质及加工工艺等制造质量的提高,单位齿长上的圆周力有时提高许用数据的。
经验算以上两数据都在许用范围内。
其中上述两种方法计算用的许用单位齿长上的圆周力都为。
轮齿的弯曲强度计算汽车主减速器锥齿轮的齿根弯曲应力为式中该齿轮的计算转矩,•超载系数在此取.尺寸系数,反映材料的不均匀性,与齿轮尺寸和热处理有关,当时在此.载荷分配系数,当两个齿轮均用骑马式支承型式时,其他方式支承时取。
支承刚度大时取最小值。
质量系数,对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取.计算齿轮的齿面宽,计算齿轮的齿数端面模数,计算弯曲应力的综合系数或几何系数,它综合考虑了齿形系数。
载荷作用点的位置载荷在齿间的分布有效齿面宽应力集中系数及惯性系数等对弯曲应力计算的影响。
计算弯曲应力时本应采用轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。
按图选取小齿轮的.,大齿轮按上式.。
,所以,.,.所以轴承符合使用要求。
对于从动齿轮的轴承,的径向力计算公式见式和式已知.所以,轴承的径向力.轴承的径向力.轴承,均采用,其额定动载荷为对于轴承,轴向力,径向力.,并且.,在此值为.约为.,由机械设计中表.可查得.,所以.所以轴承满足使用要求。
对于轴承,轴向力,径向力.,并且.由机械设计中表.可查得.,所以.所以轴承满足使用要求。
以保证其有足够的强度和寿命以及安全可靠性地工作。
在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。
齿轮的损坏形式及寿命齿轮的损坏形式常见的有轮齿折断齿面点蚀及剥落齿面胶合齿面磨损等。
它们的主要特点及影响因素分述如下轮齿折断主要分为疲劳折断及由于弯曲强度不足而引起的过载折断。
折断多数从齿根开始,因为齿根处齿轮的弯曲应力最大。
疲劳折断在长时间较大的交变载荷作用下,齿轮根部经受交变的弯曲应力。
如果最高应力点的应力超过材料的耐久极限,则首先在齿根处产生初始的裂纹。
随着载荷循环次数的增加,裂纹不断扩大,最后导致轮齿部分地或整个地断掉。
在开始出现裂纹处和突然断掉前存在裂纹处,在载荷作用下由于裂纹断面间的相互摩擦,形成了个光亮的端面区域,这是疲劳折断的特征,其余断面由于是突然形成的故为粗糙的新断面。
过载折断由于设计不当或齿轮的材料及热处理不符合要求,或由于偶然性的峰值载荷的冲击,使载荷超过了齿轮弯曲强度所允许的范围,而引起轮齿的次性突然折断。
此外,由于装配的齿侧间隙调节不当安装刚度不足安装位置不对等原因,使轮齿表面接触区位置偏向端,轮齿受到局部集中载荷时,往往会使端经常是大端沿斜向产生齿端折断。
各种形式的过载折断的断面均为粗糙的新断面。
为了防止轮齿折断,应使其具有足够的弯曲强度,并选择适当的模数压力角齿高及切向修正量良好的齿轮材料及保证热处理质量等。
齿根圆角尽可能加大,根部及齿面要光洁。
齿面的点蚀及剥落齿面的疲劳点蚀及剥落是齿轮的主要破坏形式之,约占损坏报废齿轮的以上。
它主要由于表面接触强度不足而引起的。
点蚀是轮齿表面多次高压接触而引起的表面疲劳的结果。
由于接触区产生很大的表面接触应力,常常在节点附近,特别在小齿轮节圆以下的齿根区域内开始,形成极小的齿面裂纹进而发展成浅凹坑,形成这种凹坑或麻点的现象就称为点蚀。
般首先产生在几个齿上。
在齿轮继续工作时,则扩大凹坑的尺寸及数目,甚至会逐渐使齿面成块剥落,引起噪音和较大的动载荷。
在最后阶段轮齿迅速损坏或折断。
减小齿面压力和提高润滑效果是提高抗点蚀的有效方法,为此可增大节圆直径及增大螺旋角,使齿面的曲率半径增大,减小其接触应力。
.主减速器的基本参数选择与设计计算主减速器计算载荷的确定.按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩式中发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比,在此取.,此数据此参考斯太尔.车型发动机的输出的最大转矩,此数据参考斯太尔.车型在此取传动系上传动部分的传动效率,在此取.该汽车的驱动桥数目在此取由于猛结合离合器而产生冲击载荷时的超载系数,对于般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取.,当性能系数时可取.汽车满载时的总质量在此取所以即.由以上各参数可求按驱动轮打滑转矩确定从动锥齿轮的计算转矩式中汽车满载时个驱动桥给水平地面的最大负荷,预设后桥所承载的负荷轮胎对地面的附着系数,对于安装般轮胎的公路用车,取.对于越野汽车取.对于安装有专门的防滑宽轮胎的高级轿车,计算时可取.车轮的滚动半径,在此选用轮胎型号为.,滚动半径为.,分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取.,由于没有轮边减速器取.所以按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定式中汽车满载时的总重量,参考斯太尔.车型在此取所牵引的挂车满载时总重量但仅用于牵引车的计算道路滚动阻力系数,对于载货汽车可取在此取.汽车正常行驶时的平均爬坡能力系数,对于载货汽车可取在此取.汽车的性能系数在此取见式,下的说明。
所以.式式参考汽车车桥设计式式。
主减速器基本参数的选择主减速器锥齿轮的主要参数有主从动齿轮的齿数和,从动锥齿轮大端分度圆直径端面模数主从动锥齿轮齿面宽和中点螺旋角法向压力角等。
.主从动锥齿轮齿数和选择主从动锥齿轮齿数时应考虑如下因素为了磨合均匀之间应避免有公约数。
为了得到理想的齿面重合度和高的轮齿弯曲强度,主从动齿轮齿数和应不小于。
为了啮合平稳,噪声小和具有高的疲劳强度对于商用车般不小于。
主传动比较大时,尽量取得小些,以便得到满意的离地间隙。
对于不同的主传动比,和应有适宜的搭配。
根据以上要求参考汽车车桥设计中表表取.从动锥齿轮大端分度圆直径和端面模数对于单级主减速器,增大尺寸会影响驱动桥壳的离地间隙,减小又会影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。
可根据经验公式初选,即直径系数,般取从动锥齿轮的计算转矩为和中的较小者所以初选则.有参考机械设计手册中选取则根据式,在载重汽车中占主导地位。
般在主传动比小于的情况下,应尽量采用中央单级减速驱动桥。
目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。
中央双级驱动桥。
在国内目前的市场上,中央双级驱动桥主要有种类型类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”即系列化,通用化,标准化程度高,桥壳主减速器等均可通用,锥齿轮直径不变另类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有个规格。
由于上述中央双级减速桥均是在中央单级桥的速比超出定数值或牵引总质量较大时,作为系列产品而派生出来的种型号,它们很难变型为前驱动桥,使用受到定限制因此,综合来说,双级减速桥般均不作为种基本型驱动桥来发展,而是作为特殊考虑而派生出来的驱动桥存在。
中央单级轮边减速驱动桥。
轮边减速驱动桥较为广泛地用于油田建筑工地矿山等非公路车与军用车上。
当前轮边减速桥可分为类类为圆锥行星齿轮式轮边减速桥另类为圆柱行星齿轮式轮边减速驱动桥。
圆锥行星齿轮式轮边减速桥。
由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值,它般均与中央单级桥组成为系列。
在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。
这类桥与中央双级减速桥的区别在于降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边减速器上,其“三化”程度较高。
但这类桥因轮边减速比为固定值,因此,中央主减速器的尺寸仍较大,般用于公路非公路军用车。
圆柱行星齿轮式轮边减速桥。
单排齿圈固定式圆柱行星齿轮减速桥,般减速比在至.之间。
由于轮边减速比大,因此,中央主减速器的速比般均小于,这样大锥齿轮就可取较小的直径,以保证重型汽车对离地问隙的要求。
这类桥比单级减速器的质量大,价格也要贵些,而且轮穀内具有齿轮传动,长时间在公路上行驶会产生大量的热量而引起过热因此,作为公路车用驱动桥,它不如中央单级减速桥。
综上所述,由于设计的驱动桥的传动比为.,小于。
况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势,主要是单级驱动桥还有以下几点优点重载,汽车,驱动,结构,设计,毕业设计,全套,图纸内容提要驱动桥作为汽车四大总成之,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。
当采用大功率发动机输出大的转矩以满足目前载重汽车的快速重载的高效率高效益的需要时,必须要搭配个高效可靠的驱动桥。
驱动桥般由主减速器差速器车轮传动装置和驱动桥壳等组成。
所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。
本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。
本文首先确定主要部件的结构形式和主要涉设计参数然后参考类似驱动桥的结构,确定出总体设计方案最后对主从动锥齿轮差速器圆锥行星齿轮半轴齿轮全浮式半轴和整体桥壳的强度进行校核以及对支承轴承进行了寿命校核。
本设计具有以下的优点由于的是采用中央单级减速驱动桥,使得整个后桥的结构简单,制造工艺简单,从而大大的降低了制造成本。
并且,弧齿锥齿轮的单级主减速器提高了后桥的传动效率,提高了传动的可行性。
在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之。
所以设计新型的驱动桥成为新的课题。
指导教师评语该同学能够基本完成毕业设计任务,解决方案尚可,能够基本达到预期目标图表基本合格,文理尚通顺具有定运用已学知识分析解决问题的能力工作态度尚可。
同意其参加答辩指导教师年月日答辩简要情况及评语答辩陈述条理较清楚重点较突出。
回答问题准确程度较高。
根据答辩情况,答辩小组同意其成绩评定为。
答辩小组组长年月日答辩委员会意见答辩委员会主任年月日目录摘要ⅠⅡ引言错误!未定义书签。
驱动桥结构方案分析主减速器设计.主减速器的结构形式错误!未定义书签。
主减速器的齿轮类型主减速器的减速形式主减速器主,从动锥齿轮的支承形式.主减速器的基本参数选择与设计计算主减速器计算载荷的确定主减速器基本参数的选择主减速器圆弧锥齿轮的几何尺寸计算主减速器圆弧锥齿轮的强度计算主减速器齿轮的材料及热处理主减速器轴承的计算差速器设计.对称式圆锥行星齿轮差速器的差
本资源为压缩包,下载后将获得以下所有文档,dwg格式为CAD图纸,展示的仅是截图,下载后图纸原稿无水印可编辑。
(图纸)
半轴A2、主动齿轮A3合计2张.dwg
(其他)
半轴A2.pdf
(图纸)
半轴齿轮A3.dwg
(其他)
半轴齿轮A3.pdf
(图纸)
从动齿轮A3.dwg
(其他)
从动齿轮A3.pdf
(其他)
鉴定意见.doc
(其他)
评阅表.doc
(其他)
驱动桥及差速器的介绍外文文献翻译.doc
(其他)
任务书.doc
(其他)
正文.docx
(其他)
重载汽车后驱动桥结构设计说明书.docx
(其他)
主动齿轮A3.pdf
(图纸)
装配图A0.dwg
(其他)
装配图A0.pdf





