doc (终稿)毕业论文设计_不等式的证明方法.doc(最终版) ㊣ 精品文档 值得下载

🔯 格式:DOC | ❒ 页数:24 页 | ⭐收藏:0人 | ✔ 可以修改 | @ 版权投诉 | ❤️ 我的浏览 | 上传时间:2025-09-11 08:49

都大于零,可采用作差比较法或作商比较法。


本题只给出作商法的证明过程,作商法有。


证明作商有由,知,所以成立。


分析法从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。


江西师范大学届学士学位毕业论文例求证证明,为了证明原不等式成立,只需证明即,只需证明,成立原不等式成立运用分析法时,需积累些解题经验,总结些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途。


综合法证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义定理公式等,最终达到要证结论,这是种常用的方法例已知,同号,求证证明因为,同号,所以,,则,即反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是的,从而肯定原结论是正确的,这种证明方法叫做反证法。


反证法证明个命题的思路及步骤假定命题的结论不成立进行推理,在推理中出现下列情况之与已知条件矛盾与公理或定理矛盾由于上述矛盾的出现,可以断言,原来的假定结论不成立是江西师范大学届学士学位毕业论文的肯定原来命题的结论是正确的。


例实数,满足,求证,中至少有个负数。


证明假设,都为非负数,由,从而,所以这与已知矛盾,所以,至少个为负数。


例设导和热情帮助,特别是她敏锐的学术眼光和严谨的治学态度使我受益颇深。


同时,我也要感谢我的其他老师以及同学和朋友,是他们给予我帮助,让我走过大学的风风雨雨,在那些最艰苦的日子里是他们激励我鼓励我,让我奋发图强。


我也将以更多的努力来回报他们,我相信我会做得更好,江西师范大学数学与信息科学学院学士学位论文不等式的证明方法姓名学号学院数学与信息科学学院专业数学与应用数学指导老师完成时间年月日江西师范大学届学士学位毕业论文不等式的证明方法摘要不等式证明在数学中有着举足轻重的作用和地位,是进行计算推理数学思想方法渗透的重要题材,是数学内容的重要组成部分,在不等式的证明过程中需要用到诸多的数学思想,结合了许多重要的数学内容。


在本论文中,我总结了些数学中证明不等式的方法在初等数学不等式的证明中经常用到的有比较法作商法分析法综合法数学归纳法反证法放缩法换元法判别式法函数法几何法等等在高等数学不等式的证明中经常利用中值定理泰勒公式拉格朗日函数以及些著名不等式,如均值不等式柯西不等式詹森不等式赫尔德不等式等等从而使不等式的证明方法更加的完善,有利于我们进步的探讨和研究不等式的证明通过学习这些证明方法,可以帮助我们解决些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考善于思考的良好学习习惯。


关键词不等式比较法数学归纳法函数江西师范大学届学士学位毕业论文,证明不等式判别式法标准化法分解法利用函数证明不等式利用函数单调性利用函数的极值利用函数的凹凸性利用中值定理利用拉格朗日中值定理利用柯西中值定理利用泰勒公式小结参考文献致谢江西师范大学届学士学位毕业论文引言在数学的学习过程中,不等式证明是个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的认识要比方程要迟的多直到世纪以后,不等式的理论才逐渐发展起来,成为数学基础理论的个重要组成部分在研究数学的不等式过程中,有许多的内容都十分的有用,如不等式的性质不等式的证明方法和不等式的解法在本文中,我们就不说明了,而主要的介绍些证明不等式的常用方法利用函数证明不等式的方法和利用些著名不等式证明不等式的方法希望通过这些方法的学习,我们可以很好的认识数学的些特点从而开拓下我们的数学视野,深化下我们对不等式证明方法的认识,以便于可以站在更高的角度来研究数学不等式不等式证明的基本方法比较法比较法是证明不等式的最基本最重要的方法之,它是两个实数大小比较的最直接的方法,比较法可分为作差比较法和作商比较法。


作差比较法在比较两个实数和的大小时,可借助的符号来判断,若,则若,则。


步骤般为作差变形判断正号负号零。


变形时常用的方法有配方通分因式分解应用已知定理公式等。


例已知求证。


证明作差由知,又因为二次三项式的首项系数判别式恒成立,江西师范大学届学士学位毕业论文用作差比较法能够较直接的比较两个数的大小。


作商比较法作商比较法依据不等式的运算性质般在,均为正数时,若,则若,则,来判断其大小。


其步骤为作商变形判断大于或小于。


例设,求证。


,。


江西师范大学届学士学位毕业论文目录引言不等式证明的基本方法比较法作差比较法作商比较法分析法综合法反证法换元法三角代换法增量换元法放缩法添舍放缩利用基本不等式分式放缩迭合法数学归纳法构造解析几何模型的应用,下面通过例题作筒单说明。


例己知,求证。


证明设函数。


则,。


由引理可知函数是凹函数。


设,则由定理有江西师范大学届学士学位毕业论文而,所以故。


利用中值定理微分中值定理将函数与导数有机地联系起来,如果所求证的不等式经过简单变形后,与微分中值定理的结构有相似性,就可以考虑利用微分中值定理来证明,其关键是构造个辅助函数,然后利用公式证明。


利用拉格朗日中值定理用拉格朗日中值定理证明不等式目标在于凑出形式类似于拉格朗日中值定理的式子,再寻找机会应用进行证明。


拉格朗日中值定理设满足在闭区间,上连续在开区间,内可导,则有点,使得例若,即,证证明令,显然在,区间上,根据拉格朗日中值定理有因为,有即江西师范大学届学士学位毕业论文例证明不等式,。


证明令,则在,上应用拉格朗日中值定理得到这里,有因为所以即许多证明题如例都不能直接应用拉格朗日中值定理,必须先构造了函数,因此在利用其证明不等式时,如何构造辅助函数,是证明的关键。


利而故小结不等式的证明直都是基础数学的重要内容和难点,不仅要求学生系统的掌握知识的内在联系,运用所学知识解决较为复杂或综合性的问题,还要求有很强的逻辑思维能力分析和解决问题的能力,因此教师在教学上要有的放失。


探索了解不等式的证明过程,发觉不等式背后蕴含的更深步的结论,发挥创造性思维,在日后的教育教学过程中,将加深学生对不等式证明乃至对数学学科的理解。


证明不等式,是没有固定的模式可以套用的,它方法灵活多变,技巧性强综合性强,且能有效地考查学生的逻辑思维能力运算能力实践能力,以及运用相关的知识和方法去分析问题和解决问题的能力,经常同次函数二次函数对数函数数列等知识结合起来考查,并多次出现在压轴题位置上。


从而系统的掌握好不等式的性质,是解决不等式证明问题的基础。


不等式的性质体系是逻辑推理的依据,离开了这些系统性质,推理的严密性就无从谈起。


因此要反复熟悉不等式性质的每条具体内容,结合具体问题用准用熟用活。


江西师范大学届学士学位毕业论文参考文献李长明,周焕山初等数学研究高等教育出版社,北京,叶慧萍反思性教学设计不等式证明综合法数学教学研究姚开成中学数学不等式证明的基本方法新疆石油教育学院学报,王竹霞,臧顺全初探不等式证明的几种方法甘肃林业职业技师学院学报孙凤芝,李伟不等式证明的方法探究大庆师范学院学报,马雪雅加权几何平均不等式数学杂志,朱华伟,钱展望数学解题策略北京科学出版社,匡继昌常用不等式济南山东科技出版社张新全两个不等式的证明数学通报,刘玉琏,傅沛仁编数学分析讲义上册高等教育出版社,江西师范大学届学士学位毕业论文致谢在论文的准备和写作过程中,我得到了易奇志老师的悉心指用柯西中值定理柯西中值定理定义,满足以下几个条件在,上都连续在,上都可导和不同时为零,则存在使得柯西中值定理的形式,可以看到两个函数式的比值,在移动条件下可以化成两个函数的导数的比值,我们将以微分中值定理为理论依据,通过求导,建立个简便而有效的方法来证明不等式成立。


例设,,求证江西师范大学届学士学位毕业论文证明令,由题设条件可知,在上满足柯西中值定理

下一篇
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第1页
1 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第2页
2 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第3页
3 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第4页
4 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第5页
5 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第6页
6 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第7页
7 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第8页
8 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第9页
9 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第10页
10 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第11页
11 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第12页
12 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第13页
13 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第14页
14 页 / 共 24
(终稿)毕业论文设计_不等式的证明方法.doc(最终版)第15页
15 页 / 共 24
温馨提示

1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。

2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。

3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。

4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。

5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
筛选: 精品 DOC PPT RAR
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批