,。
方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。
关于状态估计问题,我们要估计,因为它包含所有的系统信息。
问题是,我们不能直接很好地描为测量。
相反,我们测量的是的和测量噪声的个函数。
我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。
举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。
我们可以这样说,系统的状态由车辆位置和速度表示。
输入是加速度和输出为测量位置。
让我们进步假设我们能够测量每秒的位置。
该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。
是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。
最后。
是等于测量噪声的个标量也可以说是仪表误差。
现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。
我们仅能使用作为我们的位置,但是是噪声。
我们本可以通过使用卡尔曼滤波做得更好。
这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。
卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。
在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。
我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。
如果我们非常有信心在我们的初始估计,则应该是比较小的。
如果我们是非常不确定我们的初始估计并则应会很大。
从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。
线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。
不幸的是,线性系统并不真正存在所有系统最终是非线性的。
即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。
如果电阻器的电压超过定数值时,欧姆定律就不适用了。
图显示个典型的通过电阻的电流和电压之间的关系。
当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。
即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。
这说明了个事实线性系统不存在这个真实的世界。
所以我们看到,线性系统并不真正存在。
然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。
但到目前为止只能用到足够近。
最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。
在这些情况下,我们会需要去探索非线性滤波。
非线性滤波可以是困难和复杂的,这当然是不能理解为线性滤波。
然而,些非线性估计方法已经或即将很普遍。
这些包括非线性的扩展卡尔曼滤波器,无迹的卡尔曼滤波器,在我的书里也有介绍见额外阅读本文末尾处。
在这篇文章我将会谈论的是两个最基本的非线性的扩展卡尔曼滤波。
标准的卡尔曼滤波我刚总结并不直接适用于非线性系统。
然而,如果我们想把非线性系统变换为线性系统,我们可以利用线性估计方法来估计系统状态。
为了难点非线性系统,我们将使用个数学工具叫泰勒级数展开,下面我们即将介绍泰勒级数展开非线性卡尔曼滤波的关键是扩展系统的非线性方程在围绕个名义上的点的泰勒级数展开。
泰勒级数展开的种非线性函数可以写成,在方程中是的第个衍生式,该方程看起来很复杂,但方程真的是很简单。
让我们来看个例子。
假设我们想拓展在点泰勒级数在。
记住,衍生的是,而派生出来的是。
那意味着我们可以写出的泰勒级数展开是因为我们正在点上处展开,我们看到,。
的泰勒级数展开等于如果我们使用二阶泰勒级数展开的,我们可以这样说,因为大约等于。
这就是所谓的二次,因为它是的二次方项。
换句话说,我们可以忽略其余在泰勒级数中的高次方项。
这是因为在泰勒级数中,的次方愈大它所代表的值的影响就越小。
试试自己把用二阶泰勒级数展开。
表显示及其二阶泰勒级数展开的各个的值。
我们看到当越小也就是,当我逐渐接近名义点时,泰勒级数展开可以让我们更好地逼近的真正值。
换句话说,阶泰勒级数展开的个函数是相当于图显示函数连同它在点时的阶泰勒级数展开。
当的值很小时图上的这两条线是相当接近的,表明了泰勒级数的展开很好的近似于。
但是当越大而这两条线分开。
所以对大值的,是种不好的泰勒级数展开近似。
生活在现实我们看过了卡尔曼滤波器可改装为在非线性系统的状态估计。
结果叫做卡尔曼滤波器扩展卡尔曼滤波算法。
我觉得它很有趣,在世纪年代的在美国国家航空和宇宙航行局的太空计划的航天器导航中第次应用卡尔曼滤波的线性系统并不是非线性系统。
卡尔曼滤波器的使用是源自斯坦利施密特在背后的驱动。
最早是在五十年代和六十年代初,美国国家航空和宇宙航行局开始时的登月任务的可行性研究时,施密特是国航空暨太空总署艾米斯动态分析分支的酋长。
,卡尔曼和施密特共同开发这,理论,卡尔施密特需要个导航算法。
非线性卡尔曼滤波使施密特发挥了重要的作用,在世纪年代初,卡尔曼滤波器常常被称为卡尔曼施密特过滤器。
使用个算法的关键是能够代表系统数学模型。
那是,卡尔曼滤波器设计人员需要了解系统,够得上能够描述其行为与微分方程组。
在实践中,这往往是最困难的部分的实现方法,利用卡尔曼滤波器在卡尔曼滤波的另个挑战是能够精确模拟系统噪音。
在我们推导卡尔曼滤波器时,我们使用了个阶泰勒级数逼近非线性系统方程。
如果我们使用二阶泰勒级数近似方程式我们会有个更精确的逼近我们的非线性方程组。
这是个例子,所谓的高阶的方法对非线性滤波。
如果系统非线性尤其严重,高阶的方法也许能给更好的结果。
这些高阶的方法还包括二阶卡尔曼滤波迭代卡尔曼滤波卡尔作为废弃物未加以利用,可对废弃物进行深加工综合利用,提取有价值的咖啡碱茶多酚茶多糖。
用氯仿乙酸乙酯依次回流提取可有效地将咖啡碱茶多酚以及其它脂溶性的物质分步提取出来,防止茶多酚氧化变质,且能破坏细胞壁膜,使多糖裸露出来,有利于多糖的提取。
茶多糖作为茶叶中继茶多酚后极具开发利用价值的又种生物活性物质,其生产工艺已有大量研究,但是其含量测定因提取工艺的不同而不同,分析鉴定还有待进步完善。
目前虽然有些级结构的研究,但还不够全面和深入,同时关于多糖的高级结构以及高级结构是如何影响生物活性的研究还不清楚。
随着生化分离技术和现代分析仪器的发展和完善,茶多糖的级结构和空间构象与生物活性关系的详细研究将是今后茶多糖研究领域的热点。
参考文献全吉淑,尹学哲,金泽武道等茶多糖抗氧化作用的研究中药材苏永昌乌龙茶多糖的提取工艺生物活性及高多糖优异种质资源的研究福建农林大学,周小玲茶多糖的定量定性及生物活性研究中国海洋大学,曹鹏飞茶多糖提取工艺条件的正交试验研究安徽农业学,郭艳红,魏新林,王元凤等酶法提取茶多糖工艺条件的研究农产品加工学刊王元凤,金征宇酶法提取茶多糖工艺的研究江苏农业科学何传波,汤凤霞,熊何健等微波辅助提取铁观音茶多糖及其抗氧化活性研究集美大学学报自然科学版江和源,蒋迎茶叶多糖的微波辅助提取技术研究食品科技傅博强,谢明勇,聂少平等茶叶中多糖含量的测定食品科学,,,,,,,,,,邓国栋,郁建平利用双波长薄层扫描法测定多糖的单糖组成山地农业生物学报周鹏,沈金灿,谢明勇等法分析茶叶中提取物的单糖组成及机理探讨厦门大学学报自然科学版聂少平,谢明勇,申明月等应用高效液相色谱法测定茶叶多糖食品科学王丁刚,王淑如等茶叶多糖心血管系统的部分药理作用中国药科大学学报王丁刚,王淑如等茶叶多糖的分离纯化分析及降血脂作用中国药科大学学报,王丁刚,王淑如等茶叶多糖的抗凝血及抗血栓作用中草药聂少平,谢明勇,罗珍茶叶多糖的抗氧化活性研究天然产物研究与开发冯磊,张春飞茶叶多糖对实验性高脂血症大鼠脂质代谢的影响浙江中医杂志江和源,郑高利茶多糖降小鼠血糖功能的实验研究食品科学艳红等用酶法提取茶叶多糖,研究酶种类添加量温度和值对多糖含量的影响,并在最佳工艺基础上探讨茶多糖得率。
结果表明,质量分数为的茶叶水解酶,在值,温度的条件下,茶多糖含量最高,得率为。
王元凤研究了次热水提取后的茶渣采用热水提取复合酶提取果胶酶提取对茶多糖提取效果的影响,并对酶法提取工艺进行了优化。
结果表明,热水提取后的茶渣采用复合酶提取,在最佳工艺参数下茶多糖的提取率为,是水提法的倍采用果胶酶单独提取,在最佳工艺参数下茶多糖的提取率为,是水提法的倍。
通过对两种酶法的提取工艺分析与比较,我们可以得到酶法提取的最佳工艺条件,在此条件下酶法提取可提高茶多糖得率。
微波辅助提取的现象,所造成的知识产权等纠纷,切后果由本人承担。
参考文献王晓明电动机的单片机控制梅丽凤,王艳秋单片机原理及接口研究,本文将综述茶多糖的提取工艺含量测定方法及其在药理,。
方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。
关于状态估计问题,我们要估计,因为它包含所有的系统信息。
问题是,我们不能直接很好地描为测量。
相反,我们测量的是的和测量噪声的个函数。
我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。
举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。
我们可以这样说,系统的状态由车辆位置和速度表示。
输入是加速度和输出为测量位置。
让我们进步假设我们能够测量每秒的位置。
该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。
是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。
最后。
是等于测量噪声的个标量也可以说是仪表误差。
现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。
我们仅能使用作为我们的位置,但是是噪声。
我们本可以通过使用卡尔曼滤波做得更好。
这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。
卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。
在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。
我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。
如果我们非常有信心在我们的初始估计,则应该是比较小的。
如果我们是非常不确定我们的初始估计并则应会很大。
从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。
线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。
不幸的是,线性系统并不真正存在所有系统最终是非线性的。
即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。
如果电阻器的电压超过定数值时,欧姆定律就不适用了。
图显示个典型的通过电阻的电流和电压之间的关系。
当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。
即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。
这说明了个事实线性系统不存在这个真实的世界。
所以我们看到,线性系统并不真正存在。
然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。
但到目前为止只能用到足够近。
最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。
在这些情况下,我们会需要去探索非线性滤波。
非线性






























1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。
