1、“.....不管是线性问题还是非线性问题,只要输入输出间存在连续映射关系,就可以用个多层神经网络以任意精度来逼近之。基于神经网络的数据挖掘适合神经网络的数据挖掘问题聚类是无监督学习过程,它依据数据间的相似度将数据集划分为不同的簇。目的是概观数据的全貌,了解数据点的分布情况以及可能存在的问题。结论神经网络的优点非用户驱动,用户参与少,挖掘层次深。处理变量较多,能处理定性变量,复杂动态数据,发现的事实或规则是以描述和可视性为主要目的。分布记忆性和快速的计算能力。模块......”。
2、“.....对于数据库中模糊知识的发现,往先对输出状态进行编码,采用符号函数作为激励数。神经网络的训练速度问题构造神经网络时要求对其训练许多遍,这意味着获得精确的神经网络需要花费许多时间。结论神经网络的不足特征函数的选取特征函数的选取的是否合适,将关系到结果是否有价值和真实。实际意义的解释由于其复杂的函数形式,有时神经网络模型的实际意义难以解释。谢谢聆听!结论神经网络的不足非数值型数据的处理量化此类数据往往凭人们主观经验而定,如果不能按实际情况进行量化,将影响挖掘结果......”。
3、“.....致使产生的规则存在不真实和异常等问题。结论神经网络的不足权值和阈值初值的确定权值和阈值的初值影响算法的迭代次数和学习结果。学习样本的大小对于数据量较小的数据库,可能出现错误的结果,这时就可以把这些数据作为新样本补充到学习样本中去。结论神经网络的不足激励函数的选取激励函数是对多个输入进行处理产生输出的功能关联发现聚类分析分类与回归和决策树联机分析处理查询工具主管信息系统等。这些方法帮助分析包含在数据仓库中的数据,它们的共同特点是问题驱动的。用户必须提出许多问题,才能得到包含在复杂关系中的结果......”。
4、“.....将得不到正确的数据。神经网络原理神经网络是由大量并行分布式处理单元组成的简单处理单元。它有通过调整连接强度而从经验知识进行学习的能力并可将这些知识进行运算。是模拟人脑的种技术系统。基于神经网络的数据挖掘基于神经网络的数据挖掘由以下二用测试样本对规则的可靠性进行测试与评估,最后输出有用知识。基于神经网络的数据挖掘适合神经网络的数据挖掘问题分类是数据挖掘的个主要问题。单层感知器的线性可分能力早已证明,但是对于非线性可分问题单层网络是无能为力的。可通过加入中间层......”。
5、“.....将非分线性可分的问题映射后变为线性可分。个多层的神经网络具有非常强的分类能力,并且分类误差率较低。基于神经网络的数据挖掘适合神经网络的数据挖掘问题时序预测是依据当前已知的数据来预测将来未知数据的状态。神经网络固有的输人输出映射特性,特别个阶段组成网络构造训练和剪枝规则提取与评估基于神经网络的数据挖掘网络构造训练和剪枝这个阶段需要选择拟采用的网络模型,选择或设计种网络训练算法。训练后的网络可能有些臃肿,剪枝就是在不影响网络准确性的前提下,将网络中冗余的连接和结点去掉......”。
6、“.....基于神经网络的数据挖掘规则提取和评估这阶段从进化后产生的相对简单的网络中提取分类规则。规则提取目的就是从网络中提取规则,并转换为种易理解的形式表达出来,如决策树模糊逻辑等方法。再利被各方面专家学者看好。在年的份报告中指出数据挖掘技术将在未来的三到五年内成为对全球影响最的个关键技术领域。数据挖掘技术数据挖掘的含义数据挖掘,又称数据库中的知识发现,就是从大量数据中获取有效新颖潜在有用最终可理解的模式的非平凡过程。简单地说......”。
7、“.....这些知识是是隐含的,事先未知的潜在的有用的信息。数据挖掘技术数据挖掘的主要功能分类按照对象的属性特征,建立不同的组类来描述事物。聚类识别出分析对象内在的规则,按照这些规则把对象分成若干类。数据挖掘技术数据挖掘的主要功能关联规则和序列模式关联是种事物发生时其他事物会发生的这样种联系。预测把握分析对象发展的规律,对未来的趋势做出预见。偏差的检测对分析对象的少数的极端的特例的描述,揭示内在的原因......”。
8、“.....数据库应用的规模范围不断扩大,可获得的数据量越来越大,数据的种类也日益繁多。面对如此大规模的并且存在着“噪声”的数据,如何从中提取出隐含其中的有意义的对决策有用的信息或知识,进步提高信息利用率,成为“信息时代”亟待解决的个问题。引言世纪年代出现的数据挖掘技术受到不同领域研究学者的极大关注......”。
9、“.....但是它的应用前景早已被适合用来建立预测模型。不管是线性问题还是非线性问题,只要输入输出间存在连续映射关系,就可以用个多层神经网络以任意精度来逼近之。基于神经网络的数据挖掘适合神经网络的数据挖掘问题聚类是无监督学习过程,它依据数据间的相似度将数据集划分为不同的簇。目的是概观数据的全貌,了解数据点的分布情况以及可能存在的问题。结论神经网络的优点非用户驱动,用户参与少,挖掘层次深。处理变量较多,能处理定性变量,复杂动态数据,发现的事实或规则是以描述和可视性为主要目的......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。