,。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。我们可以这样说,系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声。我们本可以通过使用卡尔曼滤波做得更好。这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。如果我们非常有信心在我们的初始估计,则应该是比较小的。如果我们是非常不确定我们的初始估计并则应会很大。从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。不幸的是,线性系统并不真正存在所有系统最终是非线性的。即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。如果电阻器的电压超过定数值时,欧姆定律就不适用了。图显示个典型的通过电阻的电流和电压之间的关系。当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。这说明了个事实线性系统不存在这个真实的世界。所以我们看到,线性系统并不真正存在。然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性滤波可以是困难和复杂的,这当然是不能理解为线性滤波。然而,些非线性估计方法已经或即将很普遍。这些包括非线性的扩展卡尔曼滤波器,无迹的卡尔曼滤波器,在我的书里也有介绍见额外阅读本文末尾处。在这篇文章我将会谈论的是两个最基本的非线性的扩展卡尔曼滤波。标准的卡尔曼滤波我刚总结并不直接适用于非线性系统。然而,如果我们想把非线性系统变换为线性系统,我们可以利用线性估计方法来估计系统状态。为了难点非线性系统,我们将使用个数学工具叫泰勒级数展开,下面我们即将介绍泰勒级数展开非线性卡尔曼滤波的关键是扩展系统的非线性方程在围绕个名义上的点的泰勒级数展开。泰勒级数展开的种非线性函数可以写成,在方程中是的第个衍生式,该方程看起来很复杂,但方程真的是很简单。让我们来看个例子。假设我们想拓展在点泰勒级数在。记住,衍生的是,而派生出来的是。那意味着我们可以写出的泰勒级数展开是因为我们正在点上处展开,我们看到,。的泰勒级数展开等于如果我们使用二阶泰勒级数展开的,我们可以这样说,因为大约等于。这就是所谓的二次,因为它是的二次方项。换句话说,我们可以忽略其余在泰勒级数中的高次方项。这是因为在泰勒级数中,的次方愈大它所代表的值的影响就越小。试试自己把用二阶泰勒级数展开。表显示及其二阶泰勒级数展开的各个的值。我们看到当越小也就是,当我逐渐接近名义点时,泰勒级数展开可以让我们更好地逼近的真正值。换句话说,阶泰勒级数展开的个函数是相当于图显示函数连同它在点时的阶泰勒级数展开。当的值很小时图上的这两条线是相当接近的,表明了泰勒级数的展开很好的近似于。但是当越大而这两条线分开。所以对大值的,是种不好的泰勒级数展开近似。生活在现实我们看过了卡尔曼滤波器可改装为在非线性系统的状态估计。结果叫做卡尔曼滤波器扩展卡尔曼滤波算法。我觉得它很有趣,在世纪年代的在美国国家航空和宇宙航行局的太空计划的航天器导航中第次应用卡尔曼滤波的线性系统并不是非线性系统。卡尔曼滤波器的使用是源自斯坦利施密特在背后的驱动。最早是在五十年代和六十年代初,美国国家航空和宇宙航行局开始时的登月任务的可行性研究时,施密特是国航空暨太空总署艾米斯动态分析分支的酋长。,卡尔曼和施密特共同开发这,理论,卡尔施密特需要个导航算法。非线性卡尔曼滤波使施密特发挥了重要的作用,在世纪年代初,卡尔曼滤波器常常被称为卡尔曼施密特过滤器。使用个算法的关键是能够代表系统数学模型。那是,卡尔曼滤波器设计人员需要了解系统,够得上能够描述其行为与微分方程组。在实践中,这往往是最困难的部分的实现方法,利用卡尔曼滤波器在卡尔曼滤波的另个挑战是能够精确模拟系统噪音。在我们推导卡尔曼滤波器时,我们使用了个阶泰勒级数逼近非线性系统方程。如果我们使用二阶泰勒级数近似方程式我们会有个更精确的逼近我们的非线性方程组。这是个例子,所谓的高阶的方法对非线性滤波。如果系统非线性尤其严重,高阶的方法也许能给更好的结果。这些高阶的方法还包括二阶卡尔曼滤波迭代卡尔曼滤波卡尔闸时出现误报信号。结论本设计主要对箱式变电站进行,基本的介绍了箱式变电站的结构特点以及其应用。所做的工作主要包括三个方面首先是箱式变电站整体结构设计,其次是箱式变电站的次系统设计及设备选型,最后是箱式变电站的二系统设计。通过这次设计系统让我对自己的专业知识有了进步的巩固与提高,特别是对电器设备的选型,主电路的接线方式有了比较深刻的了解。参考文献黄绍平成套电器技术湖南工程学院讲义内部资料,费广标箱式变电站模式设计中国电力出版社,朱宝骅种新型箱式变电站集成变配电站电工技术杂志,麦艳红新型箱式变电站的应用与分析广西水利水电,熊作胜关于箱式变电站的技术改进电气时代,吕亚杰箱变的结构及适用型分析大同职业技术学院学报,断路器控制与信号回路控制回路设计结论防腐防裂阻燃防冻性能好。要机械强度高,耐压抗张,抗冲击。对环境有良好的协调性,能美化环境,可适应各种气候条件,外形美观,结构紧凑,箱体占地面积少,节约土地。第三章箱式变电站的总体结构设计箱式变电站对主接线的基本要求概况地说,对主接线的基本要求包括安全可靠灵活经济四个方面安全包括设备安全及人身安全。要满足这点,必须按照国家标准和规范的规定,正确选择电气设备及正常情况下的监视系统和故障情况下的保护系统,考虑各种人身安全的技术措施。可靠就是主接线应满足对不同负荷的不中断供电,且保护装置在正常运行时不误动发生事故时不拒动,能尽可能的缩下停电范围。为了满足可靠性要求,主接线应力求简单清晰。灵活是用最少的切换,能适应不同的运行方式,适应调度的要求,并能灵活简便迅速地倒换运行方式,使发生故障时停电时间最短,影响范围最小。经济是指在满足了以上要求的条件下,保证需要的设计投资最少。在主接线设计时,主要矛盾往往发生在可靠性与经济性之间主接线的选择主接线采用单母线分段接线,单母线分段接线是采用断路器或隔离开关将母线分段,通常是分成两段。母线分段后可进行分段检修,对于重要用户,可以从不同段引出两个回路,当段母线发生故障时,由于分段断路器在继电保护作用下自动将故障段迅速切除,从而保证了正常母线不间断供电和不致使重要用户停电。高压接线方式高压侧,采用负荷开关限流熔断器作为变压器的主保护,般有环网双电源和终端三种供电方式,限流熔断器相熔断时必须能联动尺寸都能够满足淬火的要求。所以,根据零件的尺寸和经济性,选用普通型间隙作业淬火槽。工装设计热处理夹具的选择原则符合热处理技术条件保证零件热处理加热,冷却,炉气成分均匀度,不致使零件在热处理过程中变形。符合经济要求在保证零件热处理质量复合热处理技术要求时,确保设备具有高的生产能力。夹具应具有质量轻,吸热量少,热强度高及使用寿命长的特点。符合使用要求保证装卸零件方便和操作安全。由于该零件为小棒料件,为了防备运行监视和计量的要求,并力求外形美观,便于观测,经济耐用等。具体要求如下准确度高,误差小。其数值应符合所属等级准确度的要求误差不应随时间温度湿度和外磁场等外界条件的影响而变化仪表本身消耗的功率应越小,。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。我们可以这样说,系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声。我们本可以通过使用卡尔曼滤波做得更好。这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。如果我们非常有信心在我们的初始估计,则应该是比较小的。如果我们是非常不确定我们的初始估计并则应会很大。从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。不幸的是,线性系统并不真正存在所有系统最终是非线性的。即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。如果电阻器的电压超过定数值时,欧姆定律就不适用了。图显示个典型的通过电阻的电流和电压之间的关系。当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。这说明了个事实线性系统不存在这个真实的世界。所以我们看到,线性系统并不真正存在。然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 115 页
第 2 页 / 共 115 页
第 3 页 / 共 115 页
第 4 页 / 共 115 页
第 5 页 / 共 115 页
第 6 页 / 共 115 页
第 7 页 / 共 115 页
第 8 页 / 共 115 页
第 9 页 / 共 115 页
第 10 页 / 共 115 页
第 11 页 / 共 115 页
第 12 页 / 共 115 页
第 13 页 / 共 115 页
第 14 页 / 共 115 页
第 15 页 / 共 115 页
预览结束,还剩
100 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。