,。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。我们可以这样说,系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声。我们本可以通过使用卡尔曼滤波做得更好。这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。如果我们非常有信心在我们的初始估计,则应该是比较小的。如果我们是非常不确定我们的初始估计并则应会很大。从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。不幸的是,线性系统并不真正存在所有系统最终是非线性的。即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。如果电阻器的电压超过定数值时,欧姆定律就不适用了。图显示个典型的通过电阻的电流和电压之间的关系。当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。这说明了个事实线性系统不存在这个真实的世界。所以我们看到,线性系统并不真正存在。然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性滤波可以是困难和复杂的,这当然是不能理解为线性滤波。然而,些非线性估计方法已经或即将很普遍。这些包括非线性的扩展卡尔曼滤波器,无迹的卡尔曼滤波器,在我的书里也有介绍见额外阅读本文末尾处。在这篇文章我将会谈论的是两个最基本的非线性的扩展卡尔曼滤波。标准的卡尔曼滤波我刚总结并不直接适用于非线性系统。然而,如果我们想把非线性系统变换为线性系统,我们可以利用线性估计方法来估计系统状态。为了难点非线性系统,我们将使用个数学工具叫泰勒级数展开,下面我们即将介绍泰勒级数展开非线性卡尔曼滤波的关键是扩展系统的非线性方程在围绕个名义上的点的泰勒级数展开。泰勒级数展开的种非线性函数可以写成,在方程中是的第个衍生式,该方程看起来很复杂,但方程真的是很简单。让我们来看个例子。假设我们想拓展在点泰勒级数在。记住,衍生的是,而派生出来的是。那意味着我们可以写出的泰勒级数展开是因为我们正在点上处展开,我们看到,。的泰勒级数展开等于如果我们使用二阶泰勒级数展开的,我们可以这样说,因为大约等于。这就是所谓的二次,因为它是的二次方项。换句话说,我们可以忽略其余在泰勒级数中的高次方项。这是因为在泰勒级数中,的次方愈大它所代表的值的影响就越小。试试自己把用二阶泰勒级数展开。表显示及其二阶泰勒级数展开的各个的值。我们看到当越小也就是,当我逐渐接近名义点时,泰勒级数展开可以让我们更好地逼近的真正值。换句话说,阶泰勒级数展开的个函数是相当于图显示函数连同它在点时的阶泰勒级数展开。当的值很小时图上的这两条线是相当接近的,表明了泰勒级数的展开很好的近似于。但是当越大而这两条线分开。所以对大值的,是种不好的泰勒级数展开近似。生活在现实我们看过了卡尔曼滤波器可改装为在非线性系统的状态估计。结果叫做卡尔曼滤波器扩展卡尔曼滤波算法。我觉得它很有趣,在世纪年代的在美国国家航空和宇宙航行局的太空计划的航天器导航中第次应用卡尔曼滤波的线性系统并不是非线性系统。卡尔曼滤波器的使用是源自斯坦利施密特在背后的驱动。最早是在五十年代和六十年代初,美国国家航空和宇宙航行局开始时的登月任务的可行性研究时,施密特是国航空暨太空总署艾米斯动态分析分支的酋长。,卡尔曼和施密特共同开发这,理论,卡尔施密特需要个导航算法。非线性卡尔曼滤波使施密特发挥了重要的作用,在世纪年代初,卡尔曼滤波器常常被称为卡尔曼施密特过滤器。使用个算法的关键是能够代表系统数学模型。那是,卡尔曼滤波器设计人员需要了解系统,够得上能够描述其行为与微分方程组。在实践中,这往往是最困难的部分的实现方法,利用卡尔曼滤波器在卡尔曼滤波的另个挑战是能够精确模拟系统噪音。在我们推导卡尔曼滤波器时,我们使用了个阶泰勒级数逼近非线性系统方程。如果我们使用二阶泰勒级数近似方程式我们会有个更精确的逼近我们的非线性方程组。这是个例子,所谓的高阶的方法对非线性滤波。如果系统非线性尤其严重,高阶的方法也许能给更好的结果。这些高阶的方法还包括二阶卡尔曼滤波迭代卡尔曼滤波卡尔。非常感谢。毕业设计论文知识产权声明本人完全了解西安工业大学北方信息工程学院有关保护知识产权的规定,即本科生在校攻读学位期间学位论文工作的知识产权属于西安工业大学北方信息工程学院。本人保证毕业离校后,使用学位论文工作成果或用学位论文工作成果发表论文时署名单位仍然为西安工业大学北方信息工程学院。大学有权保留送交的学位论文的复印件,允许学位论文被查阅和借阅学校可以公布学位论文的全部或部分内容,可以采用影印缩印或其他复制手段保存学位论文。保密的学位论文在解密后应遵守此规定学位论文作者签名指导教师签名日期毕业设计论文独创性声明秉承学校严谨的学风与优良的科学道德,本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,学位论文中不包含其他人已经发表或撰写过的成果,不包含本人已申请学位或他人已申请学位或其它用途使用过的成果。与我同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了致谢。学位论文与资料若有不实之处,本人承担切相关责任。学位论文作者签名指导教师签名日期附件头文件宏定义高八位数据端口地址低八位数据端口地址读单点转换值,,,,,,,,,,,,,,,,,,,,数组设置在中,长度为已输入的数值数转换数组的信号第次检测第二次检测转换程序开启次转换,等待转换结束读高八位数据读低八位数据返回转换结果读点转换值,计时功能读红外编码参数求取车速显示重量显示查表程序转换读程序,延时程序主程序初始化开启定时器前排长度后排的长度选中开启转换设置位输入状态吨,转换精度为全面,观点正确,显示出该生具有扎实的专业基础和较高的素质。明调控决心的效应。同时,应当明确住房价格调整的目标对于房价收入比不高的小城镇,是以稳定房价,控制过快上涨为主而对于房价收入比过高的大中城市,目标应当定位于让住房价格在稳定的基础上适度下降。降低由市场渠道供应商品住房的需求商品住房价格上涨过快的主要原因是对住房的需求量过大。因此调控措施应当围绕需求方面来制定,主要应当采取下列措施大力发展经济适用房和廉租房,大大减少通过市场渠道供应商品房的需求。如果政府承担起责任,对城市中低收入的家庭提供能够满足其基本需求的经济适用房或者廉租房,则可以大大降低对市场价格供应的商品房的需求,对于房屋价格的上涨可谓是釜底抽薪。我国应当在大中城市中大力推广经济适用房和廉租房。但是要真正贯彻落实还需要制定更为明确的配套措施。我认为,首先要明确地方政府的责任。这就要求全国或者地方人的指导下完成的,毕业设计不单单是对个题目的研究学习,而重点是在检验个人在大学四年里所学知识掌握程度及综合能力的发挥。通过本次设计可以从侧面反映出个合格大学生的综合素质,不只是理论而更在实践操作。在本次毕业设计中,我系统地学习了有关单片机汇编语言编程方面相关的知识,同时了解了如何利用网络资源和单片机的知识来实现硬件电路功能。在理解硬件电路原理的基础上进行编程,并在老师的要求和指导,。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。我们可以这样说,系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声。我们本可以通过使用卡尔曼滤波做得更好。这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。如果我们非常有信心在我们的初始估计,则应该是比较小的。如果我们是非常不确定我们的初始估计并则应会很大。从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。不幸的是,线性系统并不真正存在所有系统最终是非线性的。即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。如果电阻器的电压超过定数值时,欧姆定律就不适用了。图显示个典型的通过电阻的电流和电压之间的关系。当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。这说明了个事实线性系统不存在这个真实的世界。所以我们看到,线性系统并不真正存在。然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性