1、“.....然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性滤波可以是困难和复杂的,这当然是不能理解为线性滤波。然而,些非线性估计方法已经或即将很普遍。这些包括非线性的扩展卡尔曼滤波器,无迹的卡尔曼滤波器,在我的书里也有介绍见额外阅读本文末尾处。在这篇文章我将会谈论的是两个最基本的非线性的扩展卡尔曼滤波。标准的卡尔曼滤波我刚总结并不直接适用于非线性系统。然而,如果我们想把非线性系统变换为线性系统,我们可以利用线性估计方法来估计系统状态。为了难点非线性系统,我们将使用个数学工具叫泰勒级数展开,下面我们即将介绍泰勒级数展开非线性卡尔曼滤波的关键是扩展系统的非线性方程在围绕个名义上的点的泰勒级数展开。泰勒级数展开的种非线性函数可以写成,在方程中是的第个衍生式......”。
2、“.....但方程真的是很简单。让我们来看个例子。假设我们想拓展在点泰勒级数在。记住,衍生的是,而派生出来的是。那意味着我们可以写出的泰勒级数展开是因为我们正在点上处展开,我们看到,。的泰勒级数展开等于如果我们使用二阶泰勒级数展开的,我们可以这样说,因为大约等于。这就是所谓的二次,因为它是的二次方项。换句话说,我们可以忽略其余在泰勒级数中的高次方项。这是因为在泰勒级数中,的次方愈大它所代表的值的影响就越小。试试自己把用二阶泰勒级数展开。表显示及其二阶泰勒级数展开的各个的值。我们看到当越小也就是,当我逐渐接近名义点时,泰勒级数展开可以让我们更好地逼近的真正值。换句话说,阶泰勒级数展开的个函数是相当于图显示函数连同它在点时的阶泰勒级数展开。当的值很小时图上的这两条线是相当接近的,表明了泰勒级数的展开很好的近似于。但是当越大而这两条线分开。所以对大值的,是种不好的泰勒级数展开近似。生活在现实我们看过了卡尔曼滤波器可改装为在非线性系统的状态估计......”。
3、“.....我觉得它很有趣,在世纪年代的在美国国家航空和宇宙航行局的太空计划的航天器导航中第次应用卡尔曼滤波的线性系统并不是非线性系统。卡尔曼滤波器的使用是源自斯坦利施密特在背后的驱动。最早是在五十年代和六十年代初,美国国家航空和宇宙航行局开始时的登月任务的可行性研究时,施密特是国航空暨太空总署艾米斯动态分析分支的酋长。,卡尔曼和施密特共同开发这,理论,卡尔施密特需要个导航算法。非线性卡尔曼滤波使施密特发挥了重要的作用,在世纪年代初,卡尔曼滤波器常。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克......”。
4、“.....我们可以这样说,系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声。我们本可以通过使用卡尔曼滤波做得更好。这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程......”。
5、“.....是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。如果我们非常有信心在我们的初始估计,则应该是比较小的。如果我们是非常不确定我们的初始估计并则应会很大。从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。不幸的是,线性系统并不真正存在所有系统最终是非线性的。即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。如果电阻器的电压超过定数值时,欧姆定律就不适用了。图显示个典型的通过电阻的电流和电压之间的关系。当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。这说明了个事实线性系统不存在这个真实的世界。所以我们看到......”。
6、“.....使用个算法的关键是能够代表系统数学模型。那是,卡尔曼滤波器设计人员需要了解系统,够得上能够描述其行为与微分方程组。在实践中,这往往是最困难的部分的实现方法,利用卡尔曼滤波器在卡尔曼滤波的另个挑战是能够精确模拟系统噪音。在我们推导卡尔曼滤波器时,我们使用了个阶泰勒级数逼近非线性系统方程。如果我们使用二阶泰勒级数近似方程式我们会有个更精确的逼近我们的非线性方程组。这是个例子,所谓的高阶的方法对非线性滤波。如果系统非线性尤其严重,高阶的方法也许能给更好的结果。这些高阶的方法还包括二阶卡尔曼滤波迭代卡尔曼滤波,卡尔有骤变的截面复杂的形状和长柄未注圆角尺寸按交点注收缩率技术要求采用几个简单形状的组合锻制正确图有关锻件的分合设计的纠错分析合理确定锻件的凸肩凸肩与锻件直径相差不大时不宜锻出凸肩表有关锻件的凸肩设计的纠错分析表不应锻出凸肩正确图有关锻件的凸肩设计的纠错分析高度过小的凸肩不要锻出表有关锻件的凸肩设计的纠错分析表左图不合理右图合理为了减少锻造困难......”。
7、“.....不要锻出锻件的凸肩,否则锻造困难,很难成形,容易造成不必要的磨损与形变。如图例左图。图例左视图中,锻件直径凸肩直径,因此,不锻出凸肩,可以减少锻造困难,省时省力,锻后车削,这样很经济,所以不应锻出锻件的凸肩。改进后如图例右图。凸肩不应锻出正确图有关锻件的凸肩设计的纠错分析自由锻件结构应力求简单自由锻件的结构应力求简单,避免锻件上的加强筋及工字形截面,椭圆形截面,弧线和曲线表面等复杂结构。如下是针对上述几种情况的纠错分析。自由锻件应尽量避免有锥形和斜度平面表有关自由锻件形体设计的纠错分析表左图不合理右图合理为了减少锻造困难,当凸肩高度与锻件高度之比时,不要锻出锻件的凸肩,否则锻造困难,很难成形,容易造成不必要的磨损与形变,如图例左图。当锻件凸肩高度不大时,若添加余块,金属添加不多。图左侧图中凸肩高度,锻件高度,那么,则不必锻出。改进后如右图例右图。自由锻件应避免锥形正确图有关自由锻件形体设计的纠错分析上图不合理下图合理图例以及图例上图中所示的是自由锻件......”。
8、“.....因受其加工使用设备和工具的限制,锻造时很困难,有费时又费力,很难保证其锥度和倾斜度,强加锻制会锻弯较薄的凸缘部分,使锻件形变。对于图例以及图例上图中所示的自由锻件,其有锥度的曲面和倾斜平面我们设计时应尽量避免之,自由锻件的结构应力求简单对称,由直线和平面或圆柱面组成的平滑形状。经改进,例如图例及下图,锻件清晰合理,结构简单,经济加工。有斜度平面不宜锻出正确图有关自由锻件形体设计的纠错分析自由锻件应避免两曲面或曲系统并不真正存在。然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性滤波可以是困难和复杂的,这当然是不能理解为线性滤波。然而,些非线性估计方法已经或即将很普遍。这些包括非线性的扩展卡尔曼滤波器,无迹的卡尔曼滤波器......”。
9、“.....在这篇文章我将会谈论的是两个最基本的非线性的扩展卡尔曼滤波。标准的卡尔曼滤波我刚总结并不直接适用于非线性系统。然而,如果我们想把非线性系统变换为线性系统,我们可以利用线性估计方法来估计系统状态。为了难点非线性系统,我们将使用个数学工具叫泰勒级数展开,下面我们即将介绍泰勒级数展开非线性卡尔曼滤波的关键是扩展系统的非线性方程在围绕个名义上的点的泰勒级数展开。泰勒级数展开的种非线性函数可以写成,在方程中是的第个衍生式,该方程看起来很复杂,但方程真的是很简单。让我们来看个例子。假设我们想拓展在点泰勒级数在。记住,衍生的是,而派生出来的是。那意味着我们可以写出的泰勒级数展开是因为我们正在点上处展开,我们看到,。的泰勒级数展开等于如果我们使用二阶泰勒级数展开的,我们可以这样说,因为大约等于。这就是所谓的二次,因为它是的二次方项。换句话说,我们可以忽略其余在泰勒级数中的高次方项。这是因为在泰勒级数中,的次方愈大它所代表的值的影响就越小......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。