发然利用等价无穷小量替换更简单便捷另外,值得注意的是对本例在使用洛必达法则计算时,如果不把写到分母上,而是继续使用洛必达法则,就会出现循环计算,将永远得不到结果由此更能体现等价无穷小量替换的重要性同时本例还说明不仅是在极限存在时而且在极限为无穷大时同样都可以使用等价无穷小量替换等价无穷小量在求函数极限过程中的优势,上式可化为如果直接使用洛比达法则,而不用等价无穷小替换,那么在四次使用洛比达法则的过程中,分母上的求导运算将越来越复杂若对上式中分母上的无穷小量用等价无穷小量来替换,便可将上式化为较为简单的式子,虽然让使用洛比达法则,但是其运算过程就变的很简单了请看下面的例题例解原式用罗比塔法则分离非零极限乘积因子并算出非零极限用罗比塔法则出现循环,此时用罗比塔法则求不出结果怎么办用等价无穷小量代换因为所以,原式而得解例求解原式若使用洛必达法则可知原式继续运用洛必达法则会将上式越变越复杂,难于求出最后的结果而通过运用无穷小的等价替换,将分母替换成,又将分子分解因式后进行等价替换,从而很快地求出正确结果,由此可以看出单单运用洛必达法和论文,在这里并向有关的作者表示谢意年月日则有时并不能达到较好的效果,适时地运用等价替换可以简化替换通过上面的两个例子可看到洛必达法则并不是万能的,也不定是最佳的,它的使用具有局限性,只要充分地掌握好等价无穷小量的条性质就不难求出正确的结论结论极限计算是微积分理论中的个重要内容,等价无穷小量代换又是极限运算中的个重要的方法利用等价无穷小量代换计算极限,主要是指在求解有关无穷小的极限问题时利用等价无穷小量的性质定理施行的等价无穷小量替换的计算方法,通常与洛必达法则起使用,目的是使解题步骤简化,减少运算进行等价无穷小量代换的原则是整体代换或对其中的因子进行代换即在等价无穷小量的代换中,可以分子分母同时进行代换,也可以只对分子或分母进行代换当分子或分母为和式时,通常不能将和式中的项以等价无穷小量替换,而应将和式作为个整体个因子进行代换,即必须是整体代换当分子或分母为几个因子相乘积时,则可以只对其中些因子进行等价无穷小量代换简言之,只有因子才可以进行等价无穷小量替换参考文献同济大学应用数学系,主编高等数学第版高等教育出版社杨文泰,等价无穷小量代换定理的推广甘肃高师学报王斌用罗比塔法则求未定式极限的局限性的探讨黔西南民族师专学报,华东师范大学数学系数学分析北京高等教育出版社,盛祥耀高等数学北京高等教育出版社,冯录祥关于等价无穷小量量代换的个注记伊犁师范学院学报,段丽凌,杨贺菊关于等价无穷小量替换的几点推广河北自学考试华东师范大学数学系数学分析上册第三版北京高等教育出版社,马振明,吕克噗微分习题类型分析兰州兰州大学出版社,,崔克俭,应用数学,北京中国农业出版社,张云霞高等数学教学山西财政税务专科学校学报,任治奇,梅胤胜数学分析渝西学院学报社会科学版,刘玉琏傅沛仁数学分析讲义北京人民教育出版社,致谢在临近毕业之际,我还要借此机会向在这三年中给予我诸多教诲和帮助的各位老师表示由衷的谢意,感谢他们三年来的辛勤栽培不积跬步何以至千里,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文同时,在论文写作过程中,我还参考了有关的书籍存在且,则有若且存在且,则有若且存在且,则有证明因为又因为,故上式等于因为又因为,故上式等于要证成立,只需证,因为所以结论得证性质的求极限中就使等价无穷小量的代换有了可能性,从而大大地简化了计算但要注意条件≠,≠的使用注意需要注意的是在运用无穷小替换解题时,等价无穷小量般只能在对积商的项做替换,和差的替换是不行的以上性质说明我们利用无穷小量的代换性质将无穷小的等价替换推广到和与差的形式,并对的不定式极限的求解作了简化,使其适用的函数类范围扩大,从而简化函数极限的运算过程,对不定式极限的求解有很大的意义等价无穷小量的应用等价无穷小量的应用在冯录祥老师的关于等价无穷小量量代换的个注记王斌老师的用罗比塔法则求未定式极限的局限性的探讨华东师范大学数学系的数学分析盛祥耀老师的高等数学马振明老师和吕克噗老师的微分习题类型分析,以及刘玉琏老师和傅沛仁老师的数学分析讲义中都有详细的分析与注解,在这部分我只是按照自己的需要从中选取内容,再加上自己筛选例题解答例题写出来的请看下面的内容求函数的极限在求极限中经常用到的等价无穷小量有或∞,且级数发散,则级数发散当时就是等价无穷小量由比较审敛法的极限形式知,与同敛散性,只要已知,中个的敛散性,就可以找到另个的敛散性例判定的敛散性解此时又收敛,所以,收敛例研究的敛散性解而发散,发散从以上的例题可以看出,在级数敛散性的判别中,等价无穷小量发挥了重要的作用在很多题目中,我们需要综合运用罗比达法则等价无穷小量的性质泰勒级数等相关知识,才能达到简化运算的目的等价无穷小量的优势这部分的内容是我在听了郑老师和郭老师的数学分析课以后,由于他们教学方法的鲜明对比而深受启发,在他们讲解数学分析其他部分的比较与分析时,我也希望自己能找到个他们没有整理过的知识点经过自己的努力完成对它的比较与分析,因此我选择了这部分内容请看下面的内容运用等价无穷小量求函数极限的优势例求解解法等价无穷小量替换由于等价于,等价于,则,由无穷小替换定理有解法二两个重要极限由于,,所以有解法三洛必达法则由此例可以发现,很多时候求解函数极限的方法多种多样其中包括极限的运算法则两个重要极限洛必达法则以及无穷小替换等等所以我们求解道题时要进行全方位多角度的思考,找出最适合最恰当的解题方法对上例的几种不同解法进行比较,我们很容易地现恰问题。
引言
温度是工业控制中主要的被控参数之,特别是在冶金化工建材食品
机械石油等工业中,具有举足轻重的作用。随着现代信是理论与实践并重。本设计采用单片
机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,
把温度信号通过单总线从数字温度传感器传递到单片机上。单片机数据处理之后,
发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到
进行显示。本系统可以实现多路温度信号采集与显示,机显示。系统由热敏电阻温度
传感器测量环境温度,将其电压值送入的通道进行模数转换,转换
所得的数字量由数据端输出到的口,经软件处理后将测量的温度
值经单片机的端串行输出到,经串并转换后,输出到数码管
的个显示段,用数字形式显示出当前的温度值。该系统电路简单可靠性高,
能解决实际应用中的问题。
引言
温
湖南科技工业职业技术学院
毕业设计论文
设计课题通道温度检测显示控制系统
班级
姓名胡斌
学号
专业电气自动化技术
教研室电气电子
指导老师杨可以肖剑平
联系电话
通道温度检测显示控制系统的设计
摘要
本系统以单片机为控制核心技术的多路温度采集控制系统,该系统
提供路温度信号采集,经转换后送单片机显示。系统由热敏电阻温度
传感器测量环境温度,将其电压值送入的通道进行模数转换,转换
区和针对同总价公寓型社区对联体别墅而言,主要对手集中在河营业税销售收入土建成本利润利润率方案三整体容积率,联排区占地亩项目容积率占地面积亩建筑面积预期均价元平方米预期销售总额元预期均价元平方米预期销售总额元,单体别墅,联排别墅,配套及艺术园区,销售总额减销售费用销售收入管理费用销售收入营业税销售收入土建成本利润利润,唐本盛世,江宁为六代繁华之地,十朝京畿要冲,本地块历史资源较为丰富。人文氛围项目位于南京新建大学城内,五所大学两所国际学校,众多高新技术企业包括家世界强企业,使得整个大环境充满独无二知识氛围,成为高素质人才聚集地。超低地价本地块取得价格十分优惠,使得本地块比竞争对手更有条件建造出高品质低容积率别墅从后天条件看,本地块具有很大价值提升空间。艺术和人文为本地块价值提升两大手段,而超低地价取得为本地块方面起到相应作用。我们直认为本地块是建造别墅块好地,具备了较强先天资源优势综合本项目艺术性质立项容积率限定低地价取得等因素,本地块在后期操作中有较大价值提升空间,因此对于本项目开发理应有十分信心。在开发理念思考方面,我们提出围绕市场,赚足利润做精品,树品牌既要考量现实,又要适度超前尊重共性,突出个性整体开发四大理念,在产品上以幢境界,户艺境为理念进行规划设计。我们将本项目总体定位为南京首座自然生态顶级艺墅社区,并确定了双层次高档物业对应双层次高档客户群市场定位。我们认为本项目消费者定位应该是两大主力阶层为主导,减排,其应用面将扩大到焦炭行业冶金行业及以煤为动力发然利用等价无穷小量替换更简单便捷另外,值得注意的是对本例在使用洛必达法则计算时,如果不把写到分母上,而是继续使用洛必达法则,就会出现循环计算,将永远得不到结果由此更能体现等价无穷小量替换的重要性同时本例还说明不仅是在极限存在时而且在极限为无穷大时同样都可以使用等价无穷小量替换等价无穷小量在求函数极限过程中的优势,上式可化为如果直接使用洛比达法则,而不用等价无穷小替换,那么在四次使用洛比达法则的过程中,分母上的求导运算将越来越复杂若对上式中分母上的无穷小量用等价无穷小量来替换,便可将上式化为较为简单的式子,虽然让使用洛比达法则,但是其运算过程就变的很简单了请看下面的例题例解原式用罗比塔法则分离非零极限乘积因子并算出非零极限用罗比塔法则出现循环,此时用罗比塔法则求不出结果怎么办用等价无穷小量代换因为所以,原式而得解例求解原式若使用洛必达法则可知原式继续运用洛必达法则会将上式越变越复杂,难于求出最后的结果而通过运用无穷小的等价替换,将分母替换成,又将分子分解因式后进行等价替换,从而很快地求出正确结果,由此可以看出单单运用洛必达法和论文,在这里并向有关的作者表示谢意年月日则有时并不能达到较好的效果,适时地运用等价替换可以简化替换通过上面的两个例子可看到洛必达法则并不是万能的,也不定是最佳的,它的使用具有局限性,只要充分地掌握好等价无穷小量的条性质就不难求出正确的结论结论极限计算是微积分理论中的个重要内容,等价无穷小量代换又是极限运算中的个重要的方法利用等价无穷小量代换计算极限,主要是指在求解有关无穷小的极限问题时利用等价无穷小量的性质定理施行的等价无穷小量替换的计算方法,通常与洛必达法则起使用,目的是使解题步骤简化,减少运算进行等价无穷小量代换的原则是整体代换或对其中的因子进行代换即在等价无穷小量的代换中,可以分子分母同时进行代换,也可以只对分子或分母进行代换当分子或分母为和式时,通常不能将和式中的项以等价无穷小量替换,而应将和式作为个整体个因子进行代换,即必须是整体代换当分子或分母为几个因子相乘积时,则可以只对其中些因子进行等价无穷小量代换简言之,只有因子才可以进行等价无穷小量替换参考文献同济大学应用数学系,主编高等数学第版高等教育出版社杨文泰,等价无穷小量代换定理的推广甘肃高师学报王斌用罗比塔法则求未定式极限的局限性的探讨黔西南民族师专学报,华东师范大学数学系数学分析北京高等教育出版社,盛祥耀高等数学北京高等教育出版社,冯录祥关于等价无穷小量量代换的个注记伊犁师范学院学报,段丽凌,杨贺菊关于等价无穷小量替换的几点推广河北自学考试华东师范大学数学系数学分析上册第三版北京高等教育出版社,马振明,吕克噗微分习题类型分析兰州兰州大学出版社,,崔克俭,应用数学,北京中国农业出版社,张云霞高等数学教学山西财政税务专科学校学报,任治奇,梅胤胜数学分析渝西学院学报社会科学版,刘玉琏傅沛仁