换向精后换向阀阀芯第二次进速度下换向时出现停留时间过长换向迟缓等现象,反而可以借助先导阀开始快跳时的位置来精确的调整工作台的换向点满足磨削阶梯轴或阶梯孔时的对刀需要。先导阀快跳还可以用来实现工作台的短距离换向工作台抖动在有快跳动作的先导阀上,先导阀快跳就会使阀上的主回油口完全打开,因此先导阀阀芯只要稍微偏离其中位置发出换向信号就当翻下内圆磨具进行内圆磨削时,磨具压下另个行程开关,使内外圆磨削连锁电磁铁吸合,将阀锁住在快进位置上,这样手柄就不可能被扳动,保证了安全操作。尾架顶尖的液动夹紧液压尾架的顶尖只有在砂轮快退时才能松开,因为尾架液压缸的压力油来自的前腔,并有个脚踏式的二位三通阀来操纵。阻尼孔或分别通至手摇机构丝杠螺母副平导轨及形轨等处供润滑之用。润滑油在通过阻尼孔时减轻了压力,其值由溢流阀进行调节各润滑点上所需的流量分别由各节流阀调节。除此之外,液压系统已开始工作,柱塞缸内就通入压力油,柱塞就顶住在砂轮架上,将进给丝杠螺母副的间隙消除掉,保证横向进给的准确。液压系统中的换向机构及其性能万能外圆磨床为了适应加工阶梯轴或阶梯孔的需要,对工作台换向性能有很高的要求。良好的换向性能包括换向冲击小,换向精度高,冲出量小,换向停留时间可调以及换向时间短等五项。这几个指标实际上是相互矛盾的,很难全部达到要求。般来说,换向时间短换向精度高冲出量小时,换向冲击就大换向时间长换向冲击小时,换向精度就会低,换向冲出量就会大。为了获得较好的换向性能,除了合理的选择换向阀,在外圆磨床上常采用下列几种措施采用先导阀,选用行程控制式制动,使换向阀分段变速移动,使先导阀快跳。采用先导阀工作台自动换向最简单的机构是采用机动的二位四通换向阀。这种机构的缺点在于工作台低速运动下换向时,挡块推动拨杆带着换向阀阀芯移至中间位置时会出现换向死点工作台因失去动力而停止,实现不了自动换向而工作台高速运动下换向时又会因挡块推动拨杆使换向阀快速移动,换向时间过短,液压缸腔压力突然降低,腔压力突然升高而引起换向冲击。所以,这种机构现在磨床上很少采用。当采用电磁阀换向时,上述机动操作的第个缺陷出现换向死点可以避免,但第二个缺陷出现换向冲击依然存在,同时,电磁阀还存在着换向频率不够高,寿命低,易产生故障等缺点。但采用个二位四通的机动滑阀作为先导阀,有它来控制个可调的液动换向阀以实现工作台的换向时,图上述缺点就可以全部克服掉。在这里,先导阀只用来控制液动换向阀的导阀移至中位时,压力油仍然可以通过换向阀进入液压缸,不会出现换向死点另方面液动换向阀的移动速度可以通过其两端的单向节流阀进行调整,与工作台速度无度亦不高因为制动时间实际上还受其他些因素的影响,并不是成不变的但这种方式允许按具体情况去调整制动时间当工作台速度高重量大,也就是惯性大时,可以把制动时间调得长些以利于消除换向冲击在相反的情况下则可以把它调得短些以利于提高效率。由此可见,时间控制式制动最宜用在换向频率高,要求换向平稳无冲击,但不要求换向精度很高的场合例如,平面磨床上,把它用在外圆磨床上显然是不合适的。制动式换向回路,在这里,液压缸的回路不但要通过换向阀而且还要通过先导阀才能排回油箱。拿图示工作台向右移动的情形来说,当挡块碰动拨杆先导阀向左移动时,先导阀右边的制动锥逐渐将液压缸右腔回油路关小,对工作台起制动作用,使其速度逐渐减小。在此回油通口接近于封闭还留下很小点开口量工作台速度已变得很小时控制油路才开始切换,使换向阀移动并实现工作台开始切换。在这种情况下,无论工作台原来速度快慢如何,先导阀总是先移过定的行程使工作台预先制动到差不多相同的很小速度后才开始使换向阀切换所以这种方式叫做行程控制式制动。行程制动式制动可以大大提高换向精度,减小冲出量,但是它使工作台的制动行程基本上保持恒定,因此工作台速度愈高,制动时间就愈短,换向冲击就愈大。对于万能外圆磨床来说,由于工作台的往复运动速度不高,换向冲击不是主要矛盾,而换向精度却十分重要,所以采用行程控制式制动是完全合适的。使换向阀分段变速移动为了提高换向精度减小冲出量,万能外圆磨床液压系统中换向阀阀芯的移动最好分第次快跳,慢速移动和第二次快跳三个阶段进行。这是因为先导阀对工作台的制动只能将其速度减得很慢,不能使其运动停止,工作台的终制动还是要靠换向阀到达中间位置使液压缸两腔都接通压力油时才能完成的。如果回路中换向阀阀芯只有种移动速度,当根据停留要求将节流阀开口调得很小时,阀芯就会移动得很慢工作台制动时间就会很长,不利于减少冲出量和提高换向精度。如果换向阀有个第次快跳的阶段,其阀心就能很快到达中间位置,制动精度就可以大大提高。实践证明,采取这措施后磨床工作台的异速换向精度可以从原来的提高到,同速换向精度提高到。第次快跳结束后工作台停止运动,换向阀阀芯则在慢速移动中,它所经历的时间就是工作台换向过程中的停留时间,其长短可按实际需要由停留阀或调节。停留阶段结束换向。当工作台上的挡块碰动拨杆并使先行快跳,使工作台迅速反向启动,这样做有利于提高生产率和保证磨削质量。使先导阀快跳为了进步提高换向精度,磨床工作台液压换向回路中的先导阀亦应实现快跳,这样做就不会在工作台移动速度极慢时出现先导阀阀芯还没有达到换向点位置而换向阀阀芯已走完其第次快跳途中使工作台停止运动,也不会使工作台在低关,只要调得合适就可以基本上消除换向冲击。选用行程控制式制动磨床工作台换向过程中的制动方式由时间控制式和行程控制式两种。时间控制式换向回路,其工作情况如下当换向阀在压力油作用下向左移动时,液压缸右腔的回油通道逐渐关小,工作台移动速度逐渐减慢,并在阀芯移过段距离后回油通道全部封闭,工作台停止运动。在这里,当调节好节流阀的开口量规定下换向阀的移动速度之后换向阀移过这段距离所需的时间即使工作台制动的时间就被确定了。在油液粘度基本上无变化的情况下,无论工作台移动速度快慢如何这个时间基本上是不变的,所以这种方式叫做时间控制式制动。时间控制式制动的异速换向精度较差因为工作台速度愈大,冲出量也就愈大,同速可以方法实现调速的原是,芯片根据输入的速度给定信号控制输出脉冲的脉宽。当脉冲信号处于高电平时,使开关闭合,主回路接通,电机被驱动当脉冲信号处于低电平时,使开关断开,主回路断开,电机停止转动通过频率定的脉冲信号的高电平宽度变化,控制电机在个脉冲周期内的通断比例,从而实现电机的转速调节。电机及控制器保护方案包括电机及控制器本身的过流保护和电机的过热保护,由单片机循环检测电机电流样值和电机过热信号,检测到任何种信号,单片机将进入保护方式,但具体的保护过程不同。目前,电动自行车中电机和控制器的保护多采用纯软件方式,这种方式对主回路的过流保护需要定的软件响应时间,在主回路电流剧烈增大的极限情况下,往往不能起到有效的保护作用,因而常常有烧毁电机或控制器的情形。本控制器对系统主回路过流保护采用了软硬件结合的双重保护方案,极大地提高系统的安全性和可靠性。电机及控制器过流保护采用两种保护措施并举的方式,是硬件保护方式,它属于极限电流保护,采用实时响应方式,当主回路电流超过保护控制电路所设定的电流极限值时,启动硬件保护控制电路,控制电子开关切断主回路电流,以达到保护控制器和电动机的目的,同时产生报警声。二是软件控制保护方式,属于平均值电流保护,当检测到主回路电流值超过平均电流保护值时,单片机延迟定时间后,控制电子开关切断主回路电流。平均电流保护必须注意两点主回路电流到达平均保护电流后应报警提醒骑车者,然后延时定时间,再切断主回路。这是从电动自行车实际运行情况所需来考虑的,当回路的平均电流达到保护值,如果立即切断电流,容易给骑行者带来不安全因素,只有在延时定时间并报警后才能切断电流。鉴于上述原因,软件设计时应考虑,在软件保护过程中应发出报警信号,提醒骑车者注意。平均保护电流值的设定要根据电机的特性来设定。平均保护电流值是根据电动自行车在正常负载下,爬行定坡度路面时的平均电流而设定的。采用软硬结合的双重保护方案后,系统对瞬态过流具有非常灵敏的保护能力。在系统测试过程中,设计了种极端的过流状态主回路人为短路,能对这种过流作出迅速而可靠的保护。对电机的保护还必须设置电机过热保护,单片机循环检测电基于单片机的电动车控制器的设计选择框设置成,再将设置成。设置完布线规则后执行菜单进行自动布线。自动布线后再进行人工修改,涉及的操作有菜单用于设置回线删除功能,人工重布线已经有布线的电路板时,自动删除已有的布线菜单用于设置推线功能,人工布线遇到有线阻挡时,自动将阻挡的线推开菜单用于将电路板上的直角走线改成斜角走线,该双缓冲器,信号的输出配合双缓冲器中的个缓冲器便将信号路由到的四个输出上,进而通过数字输出总线路由到个或多个上。这样在换相且当相或几相需要输出时,可在获得换相信号时通过中断程序将输出切换到相应的口上。口的输出可以直接输入到管的驱动电路,这样就不需要外部加逻辑电路。图是在开发环境下的输出路由配置图。图输出路由选择和比较器输出路由选择图基于单片机的电动车控制器的设计第四章系统软件设计本课换向精后换向阀阀芯第二次进速度下换向时出现停留时间过长换向迟缓等现象,反而可以借助先导阀开始快跳时的位置来精确的调整工作台的换向点满足磨削阶梯轴或阶梯孔时的对刀需要。先导阀快跳还可以用来实现工作台的短距离换向工作台抖动在有快跳动作的先导阀上,先导阀快跳就会使阀上的主回油口完全打开,因此先导阀阀芯只要稍微偏离其中位置发出换向信号就当翻下内圆磨具进行内圆磨削时,磨具压下另个行程开关,使内外圆磨削连锁电磁铁吸合,将阀锁住在快进位置上,这样手柄就不可能被扳动,保证了安全操作。尾架顶尖的液动夹紧液压尾架的顶尖只有在砂轮快退时才能松开,因为尾架液压缸的压力油来自的前腔,并有个脚踏式的二位三通阀来操纵。阻尼孔或分别通至手摇机构丝杠螺母副平导轨及形轨等处供润滑之用。润滑油在通过阻尼孔时减轻了压力,其值由溢流阀进行调节各润滑点上所需的流量分别由各节流阀调节。除此之外,液压系统已开始工作,柱塞缸内就通入压力油,柱塞就顶住在砂轮架上,将进给丝杠螺母副的间隙消除掉,保证横向进给的准确。液压系统中的换向机构及其性能万能外圆磨床为了适应加工阶梯轴或阶梯孔的需要,对工作台换向性能有很高的要求。良好的换向性能包括换向冲击小,换向精度高,冲出量小,换向停留时间可调以及换向时间短等五项。这几个指标实际上是相互矛盾的,很难全部达到要求。般来说,换向时间短换向精度高冲出量小时,换向冲击就大换向时间长换向冲击小时,换向精度就会低,换向冲出量就会大。为了获得较好的换向性能,除了合理的选择换向阀,在外圆磨床上常采用下列几种措施采用先导阀,选用行程控制式制动,使换向阀分段变速移动,使先导阀快跳。采用先导阀工作台自动换向最简单的机构是采用机动的二位四通换向阀。这种机构的缺点在于工作台低速运动下换向时,挡块推动拨杆带着换向阀阀芯移至中间位置时会出现换向死点工作台因失去动力而停止,实现不了自动换向而工作台高速运动下换向时又会因挡块推动拨杆使换向阀快速移动,换向时间过短,液压缸腔压力突然降低,腔压力突然升高而引起换向冲击。所以,这种机构现在磨床上很少采用。当采用电磁阀换向时,上述机动操作的第个缺陷出现换向死点可以避免,但第二个缺陷出现换向冲击依然存在,同时,电磁阀还存在着换向频率不够高,寿命低,易产生故障等缺点。但采用个二位四通的机动滑阀作为先导阀,有它来控制个可调的液动换向阀以实现工作台的换向时,图上述缺点就可以全部克服掉。在这里,先导阀只用来控制液动换向阀的导阀移至中位时,压力油仍然可以通过换向阀进入液压缸,不会出现换向死点另方面液动换向阀的移动速度可以通过其两端的单向节流阀进行调整,与工作台速度无度亦不高因为制动时间实际上还受其他些因素的影响,并不是成不变的但这种方式允许按具体情况去调整制动时间当工作台速度高重量大,也就是惯性大时,可以把制动时间调得长些以利于消除换向冲击在相反的情况下则可以把它调得短些以利于提高效率。由此可见,时间控制式制动最宜用在换向频率高,要求换向平稳无冲击,但不要求换向精度很高的