式表示个与同号,而绝对值大于的最小整数。这种方法简单易行,实时性强,但的取值需要根据系统的具体情况而选定。自适应占空比法自适应占空比扰动模糊控制法通过上文的研究我发现可以在常规的爬山法的基础上提出种自适应占空比扰动模糊控制的控制算法。常规的爬山法的原理是给输出电压个扰动电压增量,通过计算功率的大小变化,找到功率的改变方向,然而其最大的缺点就是存在动态响应和稳态精度达不到协调的矛盾,自适应占空比扰动模糊控制法就可以很好的解决上述矛盾。算法的思路图光伏电池曲线如图所示,首先将图分为三个区域,明显区斜率为正值区斜率为负值,最大功率点处斜率为零。当光伏电池工作点在两区域时,在实际系统中根据斜率确定其电压扰动值,当值确定后可以大致确定,的大小,在两区域中值较大,且,可以适当加个较大的当工作在区域时,值较小,因此,应加个较小的快速找到电压扰动值间接上就是提高了最大功率点工作的速度。图为在陈兴峰,曹志峰等光伏发电的最大功率跟踪算法研究研究与试验禹华军,潘俊民光伏电池输出特性与最大功率跟踪的仿真研究计算机仿真薛定宇,陈阳泉基于的系统仿真技术与应用北京清华大学出版社,王长贵新能源和可再生能源的现状和展望太阳能光伏产业发展论坛论文集张超,何湘宁短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用中国电机工程学报陈哲艮我国阳光发电技术面临的问题和对策能源工程程启明,程尹曼光伏电池最大功率点跟踪方法的发展研究华东电力,赵为太阳能光伏并网发电系统的研究博士学位论文合肥合肥工业大学,戴晨骏,王宏华基于模糊控制的光伏阵列仿真电气技术与自动化,,环境下建立的自适应占空比扰动模糊控制的仿真模型。图占空比模糊控制模型由图可以看出,算法模块,其输入为输出电压与电流,其输出为电路占空比的参考电压。考虑到在大多数情况下,光伏电池经过电路后将对蓄电池充电或者连接到逆变器的直流侧,在相对较小的系统采样时间内,电路的输出电压变化很小,可视为恒定,故其负载在最大功率跟踪实验中用个恒压源串联个电阻来模拟。事实上,即使电路输出电压发生定的变化,光伏电池仍然能够保持最大功率跟踪输出。但是考虑到电路占空比的限制,其输出电压不可能无限制上升,否则会导致占空比过大而失调。运行后可以得到波形图图模糊控制输出波形图可以发现,将模糊逻辑控制应用于光伏电池最大功率点的跟踪不仅跟踪迅速,而且到达最大功率点后基本没有波动,即具有良好的动稳态性能。此外,参数的计算方法也没有前述的扰动法和导纳法那么繁琐。并且模糊控制技术已经日渐成熟,它的实现并不复杂。由此可见,将模糊逻辑技术应用于最大功率点跟踪控制是可行的,并取得了良好的控制性性能。小结光伏阵列的输出特性明显的非线性性质。输出受外界环境影响大。如何尽可能的提高太阳能的效率,专家学者在理论上和实践上提出了光伏电池阵列的最大功率点跟踪这课题。太阳能的广泛利用前景更加速了人们对这课题的突破,相信在不久的将来这问题终将被人攻克。本章中在爬山法和导纳法的基扰动观测法的缺点不能准确找到最大功率点,只能在最大功率点附近振荡运行。采用扰动法不可避免的是能量的损失。该方法不能准确的找到最大功率点,只能在其附近振荡,振荡就会耗费能量,当外界环境剧变时,损失会更大。因此,在使用此方法时扰动幅度需做合理的选择。导纳法分析采用导纳增量法的优点控制效果好控制稳定度高,能准确快速的找到最大功率点,与系统的其他组件参数无关。能独立的进行设定。采用导纳增量法的缺点控制算法较复杂,对控制系统本身的要求较高控制电压初始化参数对系统启动过程中的跟踪性能有较大影响,若设置不当则可能产生较大的功率损失。爬山法和导纳增量法的基本思想比较致。不同的是数学判断式和推理方法的区别。在具体选择时应根据具体设计要求和气候环境因素要判断。小结关于最大功率点跟踪的研究已快速发展,本文只是粗略介绍了两种方法,写出了它们的原理,参数仿真,得到的基本结论。当然也存在许多瑕疵,随着时代的发展,关于这两种方法的改进策略必定应运而生。第四章自适应占空比扰动模糊控制法模糊控制的基本原理模糊控制器是模糊控制系统最核心的环节,是它不同于其它控制器的主要器件。如图所示是模糊控制器的主要模块。图中所示的是最简单的种模糊控制器,也是其他复杂控制器的基本框架。图模糊控制器数字量转换成模糊量模糊推理模糊量转换成数字量输入输出模糊控制规则库的建立模糊控制规则库的建立核心是确定语言控制规则。规则的建立要根据输出量和控制精度的要求而定,需要明确的是随着规则数目的提高,模糊控制的质量就会下降。当前常用的模糊控制规则有四种生成方法经验法根据过程的模糊性生成规则根据手工操作系统的观察生成控制规则根据学习算法生成控制规则。比较常用和简单的是前三种方法,但控制精度较差,第四种方法较复杂,同时其控制精度是最高的,目前这种方法还未完全成熟。模糊控制算法查表法查表法是应用最广泛的模糊控制算法。其特点是简单,快速,易学,它将控制规则和算法都以表格的形式列举出来,方便查找。下图是输入量及输出量的函数赋值表,如表。如此对组实际输入的根据控制表就可以查出控制量来。但是当实际应用中要改变控制规则或函数算法时,表格的数据就需重新计算,这是限制查表法的主要因素。表输入量的隶属函数赋值表表模糊控制规则表表控制表软件模糊推理法这种方法的实现更可行,模糊控制的算法完全用软件实现。输入量的模糊化模糊推理模糊决策的过程全部在线操作。目前已有多种实现该功能的软件,具体实现步骤如下定义参量输入量输出量的模糊子集和相应的函数定义规则模糊控制规则采集输入量,并进行模糊化从控制规则表中找出相应的规则,通过计算求出控制输出量的模糊集用最大隶属度法或加权平均判决法求出实际的。这种方法的优点是灵活,通用,但是在进行复杂运算时,计算机速度较慢,不适宜对控制要求较高的场合。解析公式法有些文献资料也将模糊控制中的控制规则用解析式描述,通常般表达式为其中为修正因子,取值在和之间,其中最简单的算法控制规则为根据被控对象的不同还可采用如下表达础上路图在软件中绘制出仿真电路图,如图所示。图高频功率放大器仿真电路图对电路进行仿真测试高频放大器的放大效果,在输入端输入的正弦波信号,由仿真电路图在仿真示波器选择通道观察输入的的正弦波信号,如图所示,输入电压。图正弦波信号波形图用示波器观察通道的输出波形,即经高频功率放大器放大后的信号波形,如图所示。图电路输出波形可以由示波器看出输出电压的值是。结论高频功率放大器课程设计,是对所学课程的综合检验,使理论知识进步得到了强化。本次课程设计进展比较顺利,认识到高频功率放大器在高频应用领域的重要性,它是通信系统的重要组成部分。高频功率放大器采用两级放大,效率高,可达,电源利用率高。在功率放大器的输出变压器的次级和负载之间插入滤波器,进步滤除高次谐波,改善负载上的输出波形。结束语本此课程设计首先应该感谢指导老师的热情指导,细心的教诲,还应感谢小组成员的支持与帮助,团结与付出,使我的课程设计能顺利地完成,在此表示衷心的感谢,参考文献曾兴雯,刘乃安,陈建,高频电路原理与分析,西安,西安电子科技大学出版社,年罗杰,谢自美,电子线路设计实验测试,北京,电子工业出版社,年杨霓清,高频电子线路实验及综合设计,北京,机械工业出版社,年王卫东,高频电子电路,北京,电子工业出版社,年附录元器件清单名称容量或型号数量名称容量或型号数量电容个电阻个电容个电阻个电容个电阻个电感个电阻个绕制变压器个三极管个抽头变压器个三极管个电阻个直流电源个电阻个,要求它把放大器的输入阻抗变换为前级信号源所需的负载阻抗,使电路能从前级信号源获得尽可能大的激励功率。图丙类放大器的匹配网络当有高频激励电压为它加在基极与发射极之间。其中,是激励电压的瞬时值,是激励电压的振幅值,是激励电压的角频率,是激励电压的频率。电路接好并将各电极电压加上时,则在集电极电路中就会出现受到基极电流控制的余弦脉冲,脉冲波形如图所示。是周期性函数,由数学知识可知,它可以用傅氏级数来展开,即可见,集电极电流等于其周期性脉冲的直流分量次谐波基波二次谐波和其他高次谐波的和。图集电极电流波形电路总体设计方案根据设计要求,输入电压为,输出功率大于等于,效率大于等于,应采用丙类功率放大器,但丙类功率放大器激励信号应为大信号,般在以上,可达,甚至可以更大,故需多级放大,在这里采用两级放大,第级工作在甲类,其主要作用是放大激励信号,为第二级丙类放大器提供大信号激励电压。第二级工作在丙类,进行功率放大。其中甲类功放选用晶体管,丙类功放选用,级间采用变压器进行耦合。采用直流电源作为电源。方案二同样根据课程设计要求,采取两级放大,第级也是甲类,作用也是放大激励信号,第二级同样工作在丙类。第级与第二级间采用变压器耦合,第二级的谐振电路由电感并联构成,输出匹配网络采用形匹配网络,甲类功放选用晶体管,丙类功放选用,采用直流电源作为电源。在这里采用方案,先设计丙类功率放大器,再设计甲类功率放大器。采用直流电源作为电源。丙类功率放大器具体设计为了获得较高的效率η式表示个与同号,而绝对值大于的最小整数。这种方法简单易行,实时性强,但的取值需要根据系统的具体情况而选定。自适应占空比法自适应占空比扰动模糊控制法通过上文的研究我发现可以在常规的爬山法的基础上提出种自适应占空比扰动模糊控制的控制算法。常规的爬山法的原理是给输出电压个扰动电压增量,通过计算功率的大小变化,找到功率的改变方向,然而其最大的缺点就是存在动态响应和稳态精度达不到协调的矛盾,自适应占空比扰动模糊控制法就可以很好的解决上述矛盾。算法的思路图光伏电池曲线如图所示,首先将图分为三个区域,明显区斜率为正值区斜率为负值,最大功率点处斜率为零。当光伏电池工作点在两区域时,在实际系统中根据斜率确定其电压扰动值,当值确定后可以大致确定,的大小,在两区域中值较大,且,可以适当加个较大的当工作在区域时,值较小,因此,应加个较小的快速找到电压扰动值间接上就是提高了最大功率点工作的速度。图为在陈兴峰,曹志峰等光伏发电的最大功率跟踪算法研究研究与试验禹华军,潘俊民光伏电池输出特性与最大功率跟踪的仿真研究计算机仿真薛定宇,陈阳泉基于的系统仿真技术与应用北京清华大学出版社,王长贵新能源和可再生能源的现状和展望太阳能光伏产业发展论坛论文集张超,何湘宁短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用中国电机工程学报陈哲艮我国阳光发电技术面临的问题和对策能源工程程启明,程尹曼光伏电池最大功率点跟踪方法的发展研究华东电力,赵为太阳能光伏并网发电系统的研究博士学位论文合肥合肥工业大学,戴晨骏,王宏华基于模糊控制的光伏阵列仿真电气技术与自动化,,环境下建立的自适应占空比扰动模糊控制的仿真模型。图占空比模糊控制模型由图可以看出,算法模块,其输入为输出电压与电流,其输出为电路占空比的参考电压。考虑到在大多数情况下,光伏电池经过电路后将对蓄电池充电或者连接到逆变器的直流侧,在相对较小的系统采样时间内,电路的输出电压变化很小,可视为恒定,故其负载在最大功率跟踪实验中用个恒压源串联个电阻来模拟。事实上,即使电路输出电压发生定的变化,光伏电池仍然能够保持最大功率跟踪输出。但是考虑到电路占空比的限制,其输出电压不可能无限制上升,否则会导致占空比过大而失调。运行后可以得到波形图图模糊控制输出波形图可以发现,将模糊逻辑控制应用于光伏电池最大功率点的跟踪不仅跟踪迅速,而且到达最大功率点后基本没有波动,即具有良好的动稳态性能。此外,参数的计算方法也没有前述的扰动法和导纳法那么繁琐。并且模糊控制技术已经日渐成熟,它的实现并不复杂。由此可见,将模糊逻辑技术应用于最大功率点跟踪控制是可行的,并取得了良好的控制性性能。小结光伏阵列的输出特性明显的非线性性质。输出受外界环境影响大。如何尽可能的提高太阳能的效率,专家学者在理论上和实践上提出了光伏电池阵列的最大功率点跟踪这课题。太阳能的广泛利用前景更加速了人们对这课题的突破,相信在不久的将来这问题终将被人攻克。本章中在爬山法和导纳法的基
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 54 页
第 2 页 / 共 54 页
第 3 页 / 共 54 页
第 4 页 / 共 54 页
第 5 页 / 共 54 页
第 6 页 / 共 54 页
第 7 页 / 共 54 页
第 8 页 / 共 54 页
第 9 页 / 共 54 页
第 10 页 / 共 54 页
第 11 页 / 共 54 页
第 12 页 / 共 54 页
第 13 页 / 共 54 页
第 14 页 / 共 54 页
第 15 页 / 共 54 页
预览结束,还剩
39 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。