了打可动活塞排渣气缸固定活塞冲击锤材料冲击载荷的设计与主要零件的强度校核冲击载荷的设计钻具在钻进的过程中,会遇到各种不同的地层,而不同地层的物质构成显然是不样的,根据该回旋冲击钻具的设计要求设计后该钻具能适应各种软硬不同的地质条件。也就是说能够在比较坚固的砂质页岩和页岩质砂岩中进行钻进。该地层岩石的单轴抗压强度为。该钻具是由许多小钻头组成的钻头群进行共同作业的,从总体设计中可得钻头群中小钻头的个数为个,单个小钻头作用在岩石上的冲击面积约为,由于各个小钻头是在星行运动的带动下做回旋或公转运动,且并不是每个钻头都同时作用在岩石上,那么设钻头群同时作用系数,取,而所有小钻头需要的破岩总力正是由气动驱动来满足的,所以设计该气动驱动结构所提供的总冲击力载荷由以下公式来计算式中,总冲击载荷,小钻头作用面积,岩石的抗压强度,为了保证钻头能够破碎最坚硬的岩石取,小钻头的个数。根据公式设计计算该气动驱动结构总冲击载荷如下气缸筒的壁厚校核已知,由气动驱动结构设计的缸工作压力,缸气缸筒直径为,气缸壁厚为。那么,可知该气缸筒为薄壁,查文献第页公式,可得公式式中气缸筒的壁厚气缸工作压力气缸筒的内径材料的许用应力材料的抗拉强度安全系数,般取。根据中所选定的气缸筒的材料,号钢的抗拉强度,取安全系数为,利用公式校核气缸筒的壁厚,计算如下所以满足厚度要求。缸盖固定螺钉的校核已知,由设计的气缸负载为,由气缸结构设计的固定螺钉个数为个,查文献第页公式式中气缸负载螺纹拧紧系数,固定螺栓个数螺栓材料许用应力。,为材料的屈服点。根据气动驱动结构设计所选定的螺钉,号钢的抗拉强度,取螺纹拧紧系数为,利用公式校核缸盖固定螺栓,计算如下故可以满足要求。第六章成本效益的比较计算钻具成孔速度的估算排渣能力的计算该钻具采用气举反循环出渣,泥浆循环量和排渣速度的计算公式如下式中,为考虑反流中泥浆的上升速度应大于岩屑自重下沉速度而定的系数,取为重力加速度为拟订钻屑的直径是岩屑相对密度,计算中可取为泥浆的相对密度,计算时可取为回流腔的截面积。该回旋冲击钻的钻屑直径,取,重力加速度,根据公式计算出排渣速度已知回流腔的截面积主轴空心部分的截面积,其中,再根据公式可计算出泥浆循环量实际施工时,泥浆储备量可按孔深所需泥浆的倍考虑。那么在排出的泥浆中,水占的比例约为,那么泥沙石等固体物质循环量为固在没有往地下进行打桩之前,其地层是由沙石等固体物质构成,也就是说地层为个没有空洞的实体,其体积是由固体物质所填充的,然后利用回旋钻具进行打桩作业,把沙石等固体物质和其它地方渗过来的地下水排到地表,那么在该打桩处的地下就必然形成个空井,该井的体积就和排出的沙石等固体物质的总体积相等,从而可以得出计算回旋冲击钻具的排固体物质的速度公式,公式如下孔固固体积固式中,固为钻具排固体物质的速度,体积为桩的体积,为桩的深度,孔为桩的截面积。根据以上公式,可得出钻具排固体物质的速度如下孔固固估算钻具钻进速度根据总体方案设计课题和气动驱动课题得出的钻具作业参数,主轴旋转速度为转,重锤冲击频率为次,钻杆每次钻进为,每个钻头划过的轨迹所织成的网格中,最大的网格面积小于空心主钻头上的排渣孔截面积,那么这样经过冲击和旋削后的固体物质就可以当渣排出去,初步估算太阳轮每旋转圈就可以达到这样的网格密度,也就是每分钟修平个深的孔,结合冲击钻进速度和旋削修平的速度,从而可以计算出钻具的进给速度进,计算如下进从以上得出的钻具排渣能力和进给速度来分析,钻具进给速度小于钻具排固体物质的速度,也就是说钻具每完成次冲击和旋削所捣碎的沙石和泥都通过排渣系统有效的排到了工地上,不会滞留在井底阻碍钻具作业致谢在本次设计中,我首先感谢我的指导老师,他严谨细致丝不苟的作风直是我工作学习中的榜样他循循善诱的教导和不拘格的思路给予了我无尽的启迪。让我在这短短的大学四年时间里打下了坚实的机械制图基础和学到了很多为人处事的方法。感谢我的班主任老师,他开朗的个性严厉的态度和对学生无微不至的关怀,深深的感染着我。感谢我们课题组的每位成员,在共同钻研和攻克困难的过程中,我们互相学习,互相帮助,让我留下了深刻的印象。感谢我的室友其他同学和朋友,从遥远的家来到这个陌生的城市里,是你们和我共同维系着彼此之间兄弟姐妹般的感情。感谢我的妈妈,焉得谖草,言树之背,养育之恩,无以回报,妈妈永远健康快乐是我最大的心愿。在毕业设计即将完成之际,我的心情无法平静,从开始进入课题到设计的顺利完成,有多少可敬的师长同学朋友给了我无言的帮助,在这里请接受我诚挚的谢意,目录中文摘要与关键词英文摘要与关键词第章绪论课题来源设计的目的及意义主要工作任务第二章轴承结构及密封润滑方式设计轴承结构及密封润滑的主要功用分析主轴轴承结构及密封润滑方案设计与确定传动部分轴承结构及润滑方式设计轴承结构主要零件的工艺分析第三章排渣压力气缸密封润滑方式设计上轴承座处密封设计下轴承座处密封设计上轴承座与下轴承座连接处密封设计第四章滚筒设计芯轴的设计滚筒结构与密封润滑方式设计第五章气动驱动结构零件的选材与载荷设计气动驱动结构零件的选材冲击载荷的设计与主要零件的强度校核第六章成本效益的比较计算钻具成孔速度的估算成本效益的比较总结参考文献致谢,改善了钻具的作业条件,从而可得出该钻具的成孔速度为。成本效益的比较打相同直径的桩,用回旋钻施工,每小时只能成孔约米,例如湖南文理学院校办工厂旁边的根直径米的桩,采用回旋钻施工,下午小时才进米深,打桩速度很慢,而且排炸要靠人力用铲把钻头上的泥沙弄下来,严重的影响了成孔速度,且回旋钻对岩石基本是没有钻进速度的,也就是回旋钻受地理条件限制很严重,只不过制造成本低,自身重量轻。用冲击钻施工,在泥沙层每小时大约只可以成孔米,冲击使泥沙进入钻筒内,再把钻头提到井上靠人力把其卸下来,无形的增加了工期和降低桩速化的详细设计和在变速情况下运行,风力机的风能利用系数得到不断改进,有可能在超出设计风速的同时保持最大风能利用系数。然而,这些措施将仅仅略有增加输出功率。为了达到增加输出功率的目的,主要靠增大风轮扫掠面积或者将风力发电机组安装在更大的风速区域。过去十年到现在风力机风轮直径陆续有增加,从直径增加到超过直径。风轮直径增大倍就可以增大四倍的风能功率输出。当然,风速同样影响功率输出,双倍风速将更为突出的使风能功率输出增加倍。因此,要充分考虑确保风电场建立在风速大的区域,并且风力发电机位于风场的最佳位置。在些国家使用很高的塔架超过为了利用随着高度而增大的风速。在过去的些研究中,为了确定最佳的风力发电机大小以平衡全部的制造,安装成本和运行各尺寸风力发电机对生产的收益。根据已生产的风力机的假设,结果表明风力发电机叶轮直径在米时能获得最低的能源成本。然而,这些假设将显现得相当低,并且风轮直径没有明显的数字,因此,风力机输出功率将是有限的,特别是海上风力发电机。所有现代的风力发电机都使用来自叶片的升力来驱动风轮,高转速的转子是可取的,以减少所需的变速齿轮箱的增速比,并且这将降低密实比叶片面积和风轮扫掠面积的比例。低密实比风轮作为种有效的风能利用机构,从台风力发电机上的风能恢复周期,好的情况下少于年,风能能够用于制造,并且风力发电机可在其第年运作中恢复安装。代偏航驱动器,使整个结构导向对风。叶片数量最好的选择在些方面仍然不是很明确,基本上大的风机都是使用单叶片,双叶片或者是三叶片。许多重要的科学和工程信息都是从这些政府资助的研究方案和般的原型设计工作中获得的。但是,必须认识到运行个没有人工操作,大型的风力机的问题,这种恶劣的风气候经常是不可估计的,并且设备的可靠性不是很好。同时,多兆瓦的风机也在私人的公司中建造,往往相当多的国家支持,建设要小得多,往往很简单的风力机作为商业销售。世纪年代中期在加利福尼亚州,特别是财政支持机制催生了大量小型千瓦风力发电机的安装。其中的些设计也有遇到了各种各样的问题,但是由于是小型的,可以利用普通简便的方法来修理和改进,所谓的风力机概念出现了三叶片,失速调节转子和个恒定的速率,感应电机驱动。这个简单的架构已被证明是非常成功的,并且有现在米直径风力机样大的直径和兆瓦的功率。图和图这种设计的两个例子。然而,随着商用风力机的规模引用世纪年代的大型模型成为可能,有趣的是看到当时变速操作的概念调查可,附录二英文翻译风能介绍发展历史风车的使用至少已有三千年,主要用于磨粒或泵站水,而在帆船风已成为不可缺少的电力来源甚至更长的段时间。从早在世纪,水平轴风力发电的个组成部分是农村经济,只有随着廉价的矿物燃料的引擎落入废弃,农村电气化才蔓延出来。利用风力发电或风力发电机发电可以追溯到十九世纪末期的千瓦直流风力发电机,建造在美国的丹麦研究所。然而,世纪大部分时期人们对使用风能没有兴趣,除了用于偏远住宅电力供应,并且旦并入电网成为可能,这些低功耗系统很快就被取代。个了打可动活塞排渣气缸固定活塞冲击锤材料冲击载荷的设计与主要零件的强度校核冲击载荷的设计钻具在钻进的过程中,会遇到各种不同的地层,而不同地层的物质构成显然是不样的,根据该回旋冲击钻具的设计要求设计后该钻具能适应各种软硬不同的地质条件。也就是说能够在比较坚固的砂质页岩和页岩质砂岩中进行钻进。该地层岩石的单轴抗压强度为。该钻具是由许多小钻头组成的钻头群进行共同作业的,从总体设计中可得钻头群中小钻头的个数为个,单个小钻头作用在岩石上的冲击面积约为,由于各个小钻头是在星行运动的带动下做回旋或公转运动,且并不是每个钻头都同时作用在岩石上,那么设钻头群同时作用系数,取,而所有小钻头需要的破岩总力正是由气动驱动来满足的,所以设计该气动驱动结构所提供的总冲击力载荷由以下公式来计算式中,总冲击载荷,小钻头作用面积,岩石的抗压强度,为了保证钻头能够破碎最坚硬的岩石取,小钻头的个数。根据公式设计计算该气动驱动结构总冲击载荷如下气缸筒的壁厚校核已知,由气动驱动结构设计的缸工作压力,缸气缸筒直径为,气缸壁厚为。那么,可知该气缸筒为薄壁,查文献第页公式,可得公式式中气缸筒的壁厚气缸工作压力气缸筒的内径材料的许用应力材料的抗拉强度安全系数,般取。根据中所选定的气缸筒的材料,号钢的抗拉强度,取安全系数为,利用公式校核气缸筒的壁厚,计算如下所以满足厚度要求。缸盖固定螺钉的校核已知,由设计的气缸负载为,由气缸结构设计的固定螺钉个数为个,查文献第页公式式中气缸负载螺纹拧紧系数,固定螺栓个数螺栓材料许用应力。,为材料的屈服点。根据气动驱动结构设计所选定的螺钉,号钢的抗拉强度,取螺纹拧紧系数为,利用公式校核缸盖固定螺栓,计算如下故可以满足要求。第六章成本效益的比较计算钻具成孔速度的估算排渣能力的计算该钻具采用气举反循环出渣,泥浆循环量和排渣速度的计算公式如下式中,为考虑反流中泥浆的上升速度应大于岩屑自重下沉速度而定的系数,取为重力加速度为拟订钻屑的直径是岩屑相对密度,计算中可取为泥浆的相对密度,计算时可取为回流腔的截面积。该回旋冲击钻的钻屑直径,取,重力加速度,根据公式计算出排渣速度已知回流腔的截面积主轴空心部分的截面积,其中,再根据公式可计算出泥浆循环量实际施工时,泥浆储备量可按孔深所需泥浆的倍考虑。那么在排出的泥浆中,水占的比例约为,那么泥沙石等固体物质循环量为固在没有往地下进行打桩之前,其地层是由沙石等固体物质构成,也就是说地层为个没有空洞的实体,其体积是由固体物质所填充的,然后利用回旋钻具进行打桩作业,把沙石等固体物质和其它地方渗过来的地下水排到地表,那么在该打桩处的地下就必然形成个空井,该井的体积就和排出的沙石等固体物质的总体积相等,从而可以得出计算回旋冲击钻具的排固体物质的速度公式,公式如下孔固固体积固式中,固为钻具排固体
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 51 页
第 2 页 / 共 51 页
第 3 页 / 共 51 页
第 4 页 / 共 51 页
第 5 页 / 共 51 页
第 6 页 / 共 51 页
第 7 页 / 共 51 页
第 8 页 / 共 51 页
第 9 页 / 共 51 页
第 10 页 / 共 51 页
第 11 页 / 共 51 页
第 12 页 / 共 51 页
第 13 页 / 共 51 页
第 14 页 / 共 51 页
第 15 页 / 共 51 页
预览结束,还剩
36 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。