率上重现种颜色。图火焰颜色分布图首先,根据火焰与众不同的特征,以上的火焰早期产生的火焰颜色都分布在红到黄的范围内,可以由空间经过简单比较计算得到。可以看出,任何图像中只要满足且的颜色都可以看作火焰。然而这样仅仅能够作为最初始的筛选手段排除最不可能是火焰的物体,因此这样误报率会很高。根据统计分析,绝大部分的火焰颜色在空间的值可以缩小到更小的范围,根据具体的场景,可以在三个不同的通道设定不同的阈值来检查火焰区域,般情况下,火焰满足∩∩故可以由以下规则判断个像素是否具有火焰的颜色∩∩若同时满足以上三个条件,则可以判定为火焰区域。火焰的尖角特征火焰的早期是种不稳定且不断发展的,面积是连续增大的。面积判据通过面积连续增大的特性来判断是否是火焰,但存在以下明显缺陷当照明灯等物体由熄灭到点亮或者向着摄像头运动时,其面积也是连续增大的。因此,单独使用面积判据是不可靠的。边缘抖动是早期火焰的重要特征,它与面积判据联合工作可以克服面积判据的不足,使火焰监控更加可靠和准确。不稳定的火焰本身有很多尖角,尖角的计算首先要利用图像分割和边缘增强技术把原始图像转换为数字图像,然后对图中各部分进行识别和计算。火焰边缘抖动的个明显表现就是火焰的尖角数目呈现出无规则的跳动。因此,可以采用个基于边缘抖动的火灾判据尖角判据。实现尖角判据的主要问题有两个是尖角的识别算法是如何确定尖角跳动的阈值,即找到早期火焰与其它发光物体尖角跳动特性的区别。尖角的识别过程分为分割特征提取识别。分割。分割的目的是将目标图像从背景中分离出来。边缘增强与提取。对分割后的图像进行边缘增强,将真实轮廓勾勒出来,可大大减少数据量,便于进步的处理。特征点的提取和尖角的判别。提取的目标特征主要是几何形状特性,即目标的高度宽度体态比及面积等,由于火焰的识别是种动态的目标识别,每个几何形状特征都没有固定的值,而只能给出个合适的范围。④特征点首先是它的顶点。对火焰尖角来说,尖角的顶点可能是多个点,所以特征点也就为多个。尖角的另个特征是尖,给人的视觉效果是狭而长,这要求尖角的体态要符合定的标准,尖角左右两边的夹角应满足定的条件。在计算机中尖角是由系列的点组成的,令尖角中行的亮点数为,上行的亮点数记为,要求尖角狭长可以通过控制的值来实现。另外,对尖角的宽度和高度也有限制。尖角的宽度应该有个上限,以避免重复记数,提高尖角检测较模糊,噪声点较多,且出现对各像素并行地进行,分割的结果直接给出图像区域。阈值分割的优点是计算简单运算效率较高速度快。在重视运算效率的应用场合,它得到了广泛应用。火焰直方图统计直方图是统计学中的术语,图像处理技术引用了这概念,主要用来说明图像各亮度像素的分布情况。它反映了幅图像中不同亮度等级像素所占的比例,可以看出各亮度像素数的多少和它的分布,其形状可以提供许多关于火焰状态的线索。在图像处理中所说的直方图是指灰度直方图,描述的是图像中具有该灰度值的像素个数,其横坐标表示像素的灰度级别,纵坐标是该灰度出现的概率。任意幅图像旦以直方图表示,图像的空间位置信息全部隐去,直方图只展示具有灰度的像素相对数目,并不提示像素原来处于图像的哪个位置图原灰度图直方图火焰图像增强显示图像增强即用来增强图像的些特征,以用于作进步的分析或显示。图像增强技术可以主观地改善图像的质量。因此,图像增强技术是为了改善图像感官质量而采取的种方法。它主要通过增强图像对比度等方法来实现。如对比度的增强是用来使对比度低的图像更容易显现其特征,而对比度低的可能原因包括光线不足图像感应器的动态范围不够等。图像增强的过程本身并没有增加原始资料所包含的信息,仅仅是把图像些部分的特征更加强调罢了。火焰图像存在灰度以及各色分量相对集中的特点,为了能准确观察火焰动态变化,需对火焰图像作增强显示处理。灰度均衡有时也称直方图均衡,是种通过重新均匀的分布各灰度值来增强图像对比度的方法,即输出的直方图是平的。下图为经过灰度均衡变换后示意图,与上图即中的图的灰度相对集中,图像对比不强相比,可以发现经过灰度均衡后灰度分布分散,图像对比度增强。直方图变换及图像增强程序如下,图增强后图像图直方图本章小结本章主要介绍了几个数字图像概念及数字图像预处理步骤,为火焰识别做了铺垫。火焰识别,就是要通过软件处理,能够根据提取的火焰特征来判断火焰图像的目的,所以,图像处理尤为重要,通过把采集好的图像转化灰色图,二值图,并且通过各种去噪方法,优化图像。第四章火焰识别静态特征检测颜色识别色彩空间在颜色模型中,图像般由三个图像分量组成,每个分量图像都是其原色图像。在空间,用以表示每像素的比特数叫做像素深度。其中每幅红绿蓝图像都是副比特图像,所以每个彩色像素值三个组称为比特深度。色彩模式使用模型为图像中每个像素的分量分配个范围内的强度值。图像只使用三种颜色,就可以使它们按照不同的比例混合,在屏幕边缘间断。同时使用检测算子进行垂直和水平方向的提取,发现水平方向的检测结果好于垂直方向。为了得到连续且平滑的目标边界,以便后续处理,本文最终选取算子检测边缘。图算子处理的图像原灰度图经算子处理过的图像图边缘检测的图像原灰度图经边缘检测过的图像火焰区域增长性检测火焰还有个显著的动态特性,就是火焰区域面积是不断变化的,在火灾初期面积是不断增大的即火焰区域的增长性,由火焰颜色提取的火焰区域的增长率为是第帧的火焰面积,是第其中,且为整数帧的火焰面积,在数字图像处理中面积可以用像素的和来代表,时间间隔用贞数代表,所以上式可以表示成是第帧图像中火焰区域的像素和,是第帧火焰区域的像素和,因此为从帧到帧的火焰区域像素的增长率,为了得到更可靠的增长率,采用平均增长率,公式如下此处设置个阈值,若,则可确定为火焰区域其中有实验统计得出,否则认为区域具有火焰颜色,但不是火焰。本章小结本章主要介绍了几种火焰识别的方法,识别火焰,首先要清楚火焰的静态特征,动态特征。静态特征主要通过火焰颜色,火焰形状来识别动态特征主要通过火焰频,像引接。
新建首主机厂打孔抽汽改造方案提供的抽汽参数,推算次热网的供回水温
度。
采暖综合热指标。
新建热网首站的位置考虑靠近首站布置和靠近机组厂房布
置两个方案,工艺专业进行两个方案的设初步论证该电厂的抽汽供热改造的可行性,
经过与业主方多次协商,并与汽轮机厂就抽汽问题进行了多次交流,结合本工程
特点确定了以下主要技术原则
本期改造按机组的最大供热能力考虑热负荷设计。
按照资框算
热网首站的布置厂内汽机房至首站的热网管架走向初步规划。
主要技术设计原则
根据可行性研究内容深度规定的要求,并遵照热电联产项目可行性研究技
术规定,结合铝厂自备电厂负荷性质,
业主提个战略构想的实施将
给霍林河煤矿的发展展现出更好的前景。对于促进地区经济发展,提高当地人民
生活水平都具有重要的意义。
内蒙古霍煤鸿骏铝电公司自备电厂属于企业内部的自备电厂,现有装机
机组和机组,分别于年年正式投入运行,期
工程机组总装机容量达到。由于霍林河煤业集团扩容改造内蒙古霍煤鸿
骏铝电公司电解铝项目等新增了电力负荷,年月又扩建了机组,
年月末第台投入运行,年初第二台投入运行,
二期工程总装机容量达到。
随着城市现代化建设步伐的加快,霍林郭勒市的工农业生产和城市建设迅速霍林郭勒市因煤而建,缘煤而兴,霍林河露天煤矿是全量轴,精度等级为。量具类型确定对尺寸用卡规来进行检测,量具的材料为,测量面的硬度为。极限量具尺寸公差确定确定工作量规制造公差和位置要素值,因的上偏差为,下偏差,查表查得,尺寸为的量规公差为,计算工作量规的极限偏差轴用卡规通规上偏差下偏差磨损极限止规上偏差下偏差极限量具尺寸公差带图极限量具结构设计技术要求材料钢热处理编制审核比例数量材料陕西国防学院机制卡规第五部分毕业设计体会时至今日,两个月的毕业计终于可以画上个句号了,但是现在回想起来做毕业设计的整个过程,颇有心得,其中有苦也有甜,不过乐趣尽在其中呀,这是我第次独立从事这种有相对难度的题目,接受任务以前觉得毕业设计只是对这几年来所学知识的单纯总结这是我以前的种想法,但是通过这次做毕业设计发现自己的看法有点太片面。毕业设计不仅是对前面所学知识的种检验,而且也是对自己能力的种提高。下面我对整个毕业设计的过程做下简单的总结。第,接到任务以后分析是开端,理清思路,确定方案安排两个月的设计进程。第二,方案确定好以后就是找资料了,查资料是做毕业设计的前期准
二年操作日天
三主要原材料用量吨
四能耗
电万年
调整和振兴规划,且液压制造业调整
和振兴规划实施细则也已经发布。
其中机械基础零部件高端液压油缸是装备制造业不可或缺的重
要组成部分,直接决定着重大装备和主机产品的性能水平质量和
可靠性,装备制造业调整和振兴规划,提升装备制
造业整体水平,推动机械基础零部件产业结构优化升级,国家工业和
信息化部组织制定了机械基础零部件产业振兴实施方案,其中就
有高精密液压件密封件及系统
率上重现种颜色。图火焰颜色分布图首先,根据火焰与众不同的特征,以上的火焰早期产生的火焰颜色都分布在红到黄的范围内,可以由空间经过简单比较计算得到。可以看出,任何图像中只要满足且的颜色都可以看作火焰。然而这样仅仅能够作为最初始的筛选手段排除最不可能是火焰的物体,因此这样误报率会很高。根据统计分析,绝大部分的火焰颜色在空间的值可以缩小到更小的范围,根据具体的场景,可以在三个不同的通道设定不同的阈值来检查火焰区域,般情况下,火焰满足∩∩故可以由以下规则判断个像素是否具有火焰的颜色∩∩若同时满足以上三个条件,则可以判定为火焰区域。火焰的尖角特征火焰的早期是种不稳定且不断发展的,面积是连续增大的。面积判据通过面积连续增大的特性来判断是否是火焰,但存在以下明显缺陷当照明灯等物体由熄灭到点亮或者向着摄像头运动时,其面积也是连续增大的。因此,单独使用面积判据是不可靠的。边缘抖动是早期火焰的重要特征,它与面积判据联合工作可以克服面积判据的不足,使火焰监控更加可靠和准确。不稳定的火焰本身有很多尖角,尖角的计算首先要利用图像分割和边缘增强技术把原始图像转换为数字图像,然后对图中各部分进行识别和计算。火焰边缘抖动的个明显表现就是火焰的尖角数目呈现出无规则的跳动。因此,可以采用个基于边缘抖动的火灾判据尖角判据。实现尖角判据的主要问题有两个是尖角的识别算法是如何确定尖角跳动的阈值,即找到早期火焰与其它发光物体尖角跳动特性的区别。尖角的识别过程分为分割特征提取识别。分割。分割的目的是将目标图像从背景中分离出来。边缘增强与提取。对分割后的图像进行边缘增强,将真实轮廓勾勒出来,可大大减少数据量,便于进步的处理。特征点的提取和尖角的判别。提取的目标特征主要是几何形状特性,即目标的高度宽度体态比及面积等,由于火焰的识别是种动态的目标识别,每个几何形状特征都没有固定的值,而只能给出个合适的范围。④特征点首先是它的顶点。对火焰尖角来说,尖角的顶点可能是多个点,所以特征点也就为多个。尖角的另个特征是尖,给人的视觉效果是狭而长,这要求尖角的体态要符合定的标准,尖角左右两边的夹角应满足定的条件。在计算机中尖角是由系列的点组成的,令尖角中行的亮点数为,上行的亮点数记为,要求尖角狭长可以通过控制的值来实现。另外,对尖角的宽度和高度也有限制。尖角的宽度应该有个上限,以避免重复记数,提高尖角检测较模糊,噪声点较多,且出现对各像素并行地进行,分割的结果直接给出图像区域。阈值分割的优点是计算简单运算效率较高速度快。在重视运算效率的应用场合,它得到了广泛应用。火焰直方图统计直方图是统计学中的术语,图像处理技术引用了这概念,主要用来说明图像各亮度像素的分布情况。它反映了幅图像中不同亮度等级像素所占的比例,可以看出各亮度像素数的多少和它的分布,其形状可以提供许多关于火焰状态的线索。在图像处理中所说的直方图是指灰度直方图,描述的是图像中具有该灰度值的像素个数,其横坐标表示像素的灰度级别,纵坐标是该灰度