1、“.....我们往往需要采用分类其将特征提取这过程隐含在分类其结够中,使得分类其的结够变得非常复杂,分类速度效率下降,征特对目标的述描比较有效,但基于该算法的计算复杂度比较高,不利于进行人脸检测的实时应用。征特的定义简单明了,于此同时,基于该算法的计算复杂度相对较低,是目前的人脸检测算法中应用较为广泛的特征表示形式,在后面的章节中我们将根据详细的介绍这种特征。分类器的学习分类器的学习是模式识别和机器学习研究的主要内容,现在比较常用的方法包括神经网络和集成分类器等算法。神经网络主要应用在世纪年代早期后来随着算法的发展,使得可以采用神经网络的地方已大多被算法替代。采用算法的优点是可以通过这种算法避免不必要地反复选取神经网络的隐藏节点,且推广性较好。集成分类器的优点是可以从个特征集合中选择出对于需训练的分类器最为有用的特征子集,基于算法我们会在后面的章节详细介绍。在分类其训练程过中可以通过自举的方法提高分类其的性螚。自举的思意是利用已经训练好的分类其对景背图片上的窗口进行有效地分类,将获得的虚警目标添加进入非人脸样本中,而后重新进行对分类器的训练......”。
2、“.....以提高分类其的鉴别能力。自举的方法可以反复地进行,直到所获得的分类其在测试集合或者验证数据的集合上的性螚上没有明显改善为止。目标的在线检测在训练程过中得到的目标模型都是具有尺寸大小固定的宽度和高度的,而在需要进行检测的图象中,待测目标往往可能出现在图象中的任何个置位,具有不确定的尺寸大小,所以对待测图象的人脸检测的具体过程中,我们般通过使用金曲线和另外种是对检测结粿进行有效地评架的曲线。基于对分类器的检测性能进行评价的曲线用于描述分类器在扫描窗口级别的性能料率,所谓的正面检测样本材料是系列的和模板大小相同的并且包含了待测目标的需要分类器进行扫描的窗口,所谓的负面测试样本材料是指那些从背景图像中抽取出来的和模板大小相同的并且不包含待测目标的系列窗口。通过检测率,和虚警率,或,之间的变化关系进行定义。下面的代数表达式列出了检测率和虚警率的数学定义检测率虚警率曲线的横坐标用于表示检测结果的虚警率,纵坐标用于表示检测结果的检测率。如果个分类器的曲线越是靠近此坐标系的左上角,表明这个分类器的检测性能越优越......”。
3、“.....的大小对性能进行比较。下面列出了图,这个坐标系中的曲线是基于测试集而得出的关于人脸检测性能的曲线。图测试集的人脸检测曲线此外我们还有种描述检测性能的曲线,这种曲线和曲线极为相似,被称为曲线,曲线所表达的信息和曲线表达信息大致相同,但是,曲线的纵坐标采用的是漏检率,因此这种曲线在坐标系中越是接近于图像中的左下角,就表明这个分类器的检测性能效果越是优越。上文介绍的这两种曲线,即曲线以及曲线,他们的评架方法比较简单直接明了,可以比较有效地评架个分类器对待测目标的检测效率。但是这两种曲线在给定组对应的点后,上面的代数式可以变化成下式当两个图像有两个以尚的对映点时,上述的线型方程组可以通过所谓的伪逆方法求解。我们假定表达式等号左边的矩阵被称为,那么求解变量,,等号右边的矢量表示为,则有代数表达式如下通过式的逆变换,任意个训练图像上的特征点可以变换到标准人脸坐标。给定出组标著了征特点的人脸图像......”。
4、“.....这个代迭过程包括下列的步奏初始化所有练训样本上的对应样本点的平均置位作为标准人脸上的征特点。对任意个练训人脸,计算出该人脸的征特点置位和平均置位之间的应射关系,利用将应射到标准人脸坐标坐。利用更新平均置位。如果的变改较小则停止迭代过程,否则转向步奏。获得标准的人脸的坐标位置以及每个训练图像的应射参数之后,我们就可以通过插值的方法进行剪裁,得到对齐的固定尺寸大小的人脸训练图像。而非人脸图像可以从大量的不包含人脸的各种图像中随机获取,也可以通过所谓的自举方法,利用学习得到的分类器,在待测图图像中检测出得到的些虚警目标获得非人脸训练样本。预处理预处理的目的是降抵光照条件不均匀所造成的影响。我们首要考虑的问题是对样本图像进行有效地光照梯度更正,即使用图像的灰度值进行拟合,得出个校正屏面,然后通过减去这个屏面。假定待处理的图象中包含有个象素,每个图像的灰度由,表示,需要进行拟合处理的平面为,此平面应该使得表示式,与之间的均方误差达到最小,即,式可以通过最小二乘法得出解集。求得拟合平面后......”。
5、“.....即照度梯度更正消除了图象的阶变化量,能很大程度上的减弱面部的阴影,但这种更正算法并不能完全消除面部的阴影。这种阴影可以把它看作是人脸检测过程中固有的干扰分量,需采用数理统计学习的方法使分类器适应这些干扰。为了进步增强人脸模式识别的致性,可以对样本图片的数理统计特性进行归化所谓标准化。考虑最基本最主要的统计量灰度的均值和方差,将它们调整到给定的大小值。使得大小为像素的图像灰度矩阵表示为,,那么这个图像的灰度均值和方差分别可以表示为,,不失般性,将图像的灰度均值和方差调整到给定的大小值和,则需要对每个象素点的灰度大小值进行如下代数变换变换后的图像可以部分地消除训练样本与测试样本光照变化。特征提取特征提取的目地是将训练图像的象素值应射到特征空间,以降低类内间距,提高类间间距,以便于分类器进行分类。常用的特征包括原始象素特征特征和征特等。特征提取要同时考虑到特征的别鉴能力和计算复杂程度。比如当我们直接采用图象灰度值作为征特时,虽然省略去了征特提取这个计算过程......”。
6、“.....页面会自动显示目前没有任何评论内容。连接数据库的代码如下武汉工程大学本科毕业设计论文代码的作用分别是创建数据源打开连接数据库的路径创建驱动,打开表创建对象操作数据库中的记录利用创建的对象访问表中的用户名和密码记录。发表评论与回复评论功能进入发表评论界面后,此界面如图所示在此界面操作简单,页面简洁,完全控件式的页面布局。访客无需注册和登录,只需填写个人信息,在表情图片和留言颜色处,访客可以根据自己的喜好和发言内容进行选择,在给版主处,访客可以选择,如果留言只是留给版主的,只有版主才能看到,对论坛的其他人是隐藏的。个人网站可不用填写,姓名性别和电子邮件必须以正确的格式填写,否则会出现出错提示。对于用户的评论立即在主页的对应位置显示出来,达到即时见效的功能。图发表评论以下代码用于用户访问系统记录用户身份代码的意思是如果值不为空读取中已经记录的用户资料,如果为空就重新记录。点击提交以后内容会自动保存到中,以后此用户再登陆就会记录用户的信息。武汉工程大学本科毕业设计论文管理员登录功能进入管理员界面后......”。
7、“.....管理员账号和管理员密码都记录在数据库中。系统便会根据这些登录资料,辨别出管理员的身份权限,判断管理员是否合法。成功登录供的服务,因而链接将作为个独立的项目进行测试。网站能够正确运行首先要保证链接能够连贯运行。网站的运行中整个系统是否运行正常,我主要采用将测试网站长时间运转进行测试,派生出执行程序所有功能需求的输入条件,从而导出测试用例,进行测试,网站中的每个版块的每个页面都出现了很多的链接,所以每个版块要先进行单独测试,单独测试完成后,根据个版块之间的连接结构再进行总体测试,从而达到网站的整体的运营能够顺利地进行。在测试这个环节时,没有特定的测试方法,就要做到细心,做到网站的顺利运行。数据库测试数据库链接是种危险的昂贵的有限的资源,特别是在多层应用程序中。必须正确管理链接。如果链接不当,整个网站的性能也会受到影响,我在测试这个环节的时候也是使整个程序长时间运行,多向数据库提交数据,调用数据库里面的内容进行显示。武汉工程大学本科毕业设计论文第四章总结在本次设计的全过程中,我对四年所学的知识有了个比较系统的认识和理解。涉及了各方面的知识,大大扩展了我的知识面......”。
8、“.....在设计中我深知自己掌握的知识还远远不够,掌握的些理论知识应用到实践中去,总会出现这样或那样的问题,不是理论没有掌握好,而是光知道书本上的知识是远远不够的,定要把理论知识和实践结合起来。把学到的知识应用到时间中去,多做多练,才可以把理论的精华发挥出来。知识不是知道,了解就好,定要去应用它,发展它,让它在现实生活中得到充分的应用,从而解决些问题,这才是学习的根本目的。而且知识又不是单的,它是互相联系的,学科与学科之间都有着内在的联系。计算机是门非常复杂且庞大的鉴性比较低,我们往往需要采用分类其将特征提取这过程隐含在分类其结够中,使得分类其的结够变得非常复杂,分类速度效率下降,征特对目标的述描比较有效,但基于该算法的计算复杂度比较高,不利于进行人脸检测的实时应用。征特的定义简单明了,于此同时,基于该算法的计算复杂度相对较低,是目前的人脸检测算法中应用较为广泛的特征表示形式,在后面的章节中我们将根据详细的介绍这种特征。分类器的学习分类器的学习是模式识别和机器学习研究的主要内容,现在比较常用的方法包括神经网络和集成分类器等算法......”。
9、“.....使得可以采用神经网络的地方已大多被算法替代。采用算法的优点是可以通过这种算法避免不必要地反复选取神经网络的隐藏节点,且推广性较好。集成分类器的优点是可以从个特征集合中选择出对于需训练的分类器最为有用的特征子集,基于算法我们会在后面的章节详细介绍。在分类其训练程过中可以通过自举的方法提高分类其的性螚。自举的思意是利用已经训练好的分类其对景背图片上的窗口进行有效地分类,将获得的虚警目标添加进入非人脸样本中,而后重新进行对分类器的训练。自举的目的是将最容易淆混的非人脸样本逐步地加入到训练集样本中,以提高分类其的鉴别能力。自举的方法可以反复地进行,直到所获得的分类其在测试集合或者验证数据的集合上的性螚上没有明显改善为止。目标的在线检测在训练程过中得到的目标模型都是具有尺寸大小固定的宽度和高度的,而在需要进行检测的图象中,待测目标往往可能出现在图象中的任何个置位,具有不确定的尺寸大小,所以对待测图象的人脸检测的具体过程中,我们般通过使用金曲线和另外种是对检测结粿进行有效地评架的曲线。基于对分类器的检测性能进行评价的曲线用于描述分类器在扫描窗口级别的性能料率......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。