轮转速减小。随着风轮转速的减小,发电机的功率不断修正,沿曲线变化。随着风轮转速降低,风轮功率与发电机功率之差减小,最终二者将在点交汇。转速恒定区如果保持定,即使没有达到额定功率,发电机最终将达到其转速极限,此后风力机进入转速恒定区。在这个区域,随着风速的增大,发电机转速保持恒定,功率在到达极限之前直增大,风力机在较小的兄区工作。功率恒定区随着功率的增大,发电机最终将达到其功率的极限。在功率恒定区,改变风轮桨叶的节距角,使值迅速降低,从而保持功率不变。第四章变桨距变速风力发电机组设计变桨距变速风力发电机组总控制策略根据变桨变速风力发电机组在不同区域的运行情况,将基本控制策略确定为低于额定风速时,跟踪曲线,以获得最大能量高于额定风速时,跟踪曲线,并保持输出稳定。假设起动前发电机组的桨叶节距角处于恒定角度。当风速达到起动风速后,风轮转速由零增大到发电机可以切入的转速,值不断上升,风力发电机组开始作发电运行。通过对发电机转速进行控制,风力发电机组逐渐进入恒定区,这时机组在最佳状态下运行。随风速增大,转速也增大,最后达到个允许的最大值,这时,只要功率低于允许的最大功率,转速便保持恒定。达到功率极限后,发电机组进入功率恒定区,这时随风速的增大,必须使值减小,使叶尖速比减少的速度比在转速恒定区更快,从而使风力发电机组在较小的值下作恒功率运行。高于额定风速时,变速风力发电机组的变速能力主要用来提高传动系统的柔性。为了获得良好的动态特性和稳定性,在高于额定风速的条件下采用桨叶节距控制能够取得更为理想的效果。因为在高于额定风速时,我们追求的是稳定的功率输出,采用变桨距调节,可以限制转速变化的幅度。当桨叶节距角向增大方向变化时,值得到了迅速有效的调整,功率为最大允许值。低于额定风速时,采用控制器改变发电机定子电压,以此调节发电机反力矩来改变转速,选取,,桨叶节距角最初被置为。高于额定风速时,采用控制器调节桨叶节距角来改变值,选取,,。当风速变化时,各种风况下输出功率和发电机转速的仿真结果如下所示当风速变化时,各种风况下输出功率和发电机转速的仿真结果如下所示当风速时,即风力发电机达到额定功率后,异步电动机的输出功率和转速的仿真如下图图所示。从仿真结果可以看出在低风速和高风速的起始阶段,输出功率和发电机转速都有定程度的超调和波动,尤其是在高风速时,输出功率超过允许的最大值。而且整个系统在控制时达到稳态所需的时间较长。这是因为控制器过分依赖于控制对象的模型参数及理论推导假设条件太严格,对于模型参数变化范围大非线性多变量的系统,难以满足要求。为了让风力发电机能够平稳的运行,并减少磨损延长寿命,设计好的控制器对风力发电机组进行控制是很必要的。本章小结本章介绍了变桨距变速风力发电机组并制定了总的控制策略,在建立了数学模型的基础上,设计了控制器并进行了仿真,结果未能达到满意效果,还需设计理想的控制器。第五章结论风力发电是涉及空气动力学自动控制机械传动电机学力学材料学等多学科的综合性高技术系统速比以获得最大风能高风速时能利用风轮转速的变化,储存或释放部分能量,提高传动系统的柔性,使功率输出更加平稳,其功率曲线如图所示。因而在更大容量上,调速风力发电机组将取代恒速风力发电机组而成为风力发电机的主力机型。调速风力发电机组的控制主要分成两个部分在额定风速以下时,调节发电机转速使之跟随风速变化,以获得最佳叶尖速比因此可作为跟踪问题来处理在高于额定风速时,主要通过变桨距系统改变桨叶桨距来限制风力机获取能量,使风力发电机组保持在额定值发电,并使系统失速负荷最小化。台变速风力发电机组通常需要两部分控制器,个通过电力电子装置控制发电机的转速,另个通过伺服系统控制桨叶桨距角。由于风力机可获取的能量随风速的三次方增加,因此在输入量大幅度地快速地变化时,要求控制增益也随之改变,通常选用标准工控制器。近年来,由于模糊逻辑控制技术在工业控制领域的巨大成功,基于模糊逻辑控制的智能控制技术将引入调速风力发电机组控制系统中。基本特性风力机的特性通常由簇功率系数的性能曲线来表示,功率系数是风力机叶尖速比的函数,如图所示。对于恒速风力发电机组,发电机转速的变化只比同步转速高百分之几,但风速的变化范围可以很宽。叶尖速比也可以在很宽范围内变化,因此它只有很小的机会运行在点。在风速定的情况下,风轮获得的功率将取决于功率系数。如果在任何风速下,风力机都能在点运行,便可增加其输出功率。根据图,在任何风速下,只要使得风轮的叶尖速比就可维持风力机在下运行。这就是调速风力发电机组进行转速控制的基本目标。但是由于风速测量的不可靠性,才良难建立转速与风速之间直接的对应关系。实际上我们并不是根据风速变化来调整转速的。为了不用风速控制风力机,可以修改功率表达式,以消除对风速的依赖关系,按已知的和计算。如用转速代替风速,则可以导出功率是转速的函数,立方关系仍然成立,即最佳功率与转速的立方成正比从理论上讲,输出功率是无限的,它是风速立方的函数。但实际上,由于机械强度和其他物理性能的限制,输出功率是有限度的,超过这个限度,风力发电机组的些部分便不能工作。因此变速风力发电机组受到两个基本限制功率限制,所有电路及电力电子器件受功率限制转速限制,所有旋转部件的机械强度受转速限制。变速风力发电机组运行区域恒定区在恒定区,风力发电机组受到功率转速曲线控制,用目标功率与发电机实测功率之偏差驱动系统达到平衡。功率转速特性曲线的形状由和决定。图给出了转速变化时不同风速下风力发电机组功率与目标功率的关系。如图,假定风速是,点是转速为转分时发电机的工作点,点是风力机的工作点几,它们都不是最佳点。由于风力机的机械功率大于电功率,过剩的功率使转速增大,它等于和两点的功率之差。随着转速增大,目标功率遵循曲线持续增大。同样,风力机的工作点也沿曲线变化。工作点和最终将在点交汇,风力机和发电机在点功率达到平衡。当风速是时,发电机的工作点是,风力机的工作点是。由于发电机负荷大刊孔力机产生的机械功率,故风工程松比选着在栏中选择双击选项出现对话框,在对话框输入压力值,在对话框中输入材料泊松比,如图所示,最后单击关闭该对话框。图输入材料泊松比输入摩擦系数选着在栏中选择双击选项出现对话框,在输入如图所示,后单击关闭该对话框。图输入摩擦系数输入材料导热系数选着在栏中选择双击选项出现对话框,在输入,如图所示,后单击关闭该对话框。图输入材料导热系数输入热膨胀系数选着在栏中选择双击出现对话框,在输入栏中输入,如图中所示,后单击关闭该对话框。图输入热膨胀系数输入材料密度选着在栏中选择双击选项出现对话框,在对话框中输入材料的密度,如图中所示,后单击关闭该对话框。图输入材料密度建模选择关键点选择命令。选出关键点,单击选出关键点,单击选出关键点,单击选出关键点,单击选出关键点,单击选出关键点,单击选出关键是研究切削加工的新思想。本文使用有限差分模型计算切削温度,其计算结果与实验结果吻合良好,说明此模拟计算能反映切削加工的实际切削温度,所以应用此模拟计算切削温度是可行的。切削温度解析计算的优点在于计算中,它可以不断改变刀具材料工件材料,切削条件等不同输入参数,很方便的计算出相应条件下的切削温度分布,从而可节省大量的人力物力财力,使大量的切削实验,包括些无法实现的实验在计算机上完成。同时也会节省大量的贵重的金属材料。此项研究为下步预测高韧高硬等加工材料的最佳切削条件,刀具与加工材料的最佳组合以及指导新型刀具材料的开发,奠定了基础。本论文中尚有许多待完善之处刀具在运行过程中的瞬态的温度变化没有表现出来,这正是金属切削理论的精髓。致谢感谢学院领导和老师给我提供了这次好的深入学习的机会和宽松的学习环境。通过这次毕业设计,不但使我将大学期间所学的专业知识再次回顾学习,而且也使我学到了专业领域中些前沿的知识。非常感谢在本次设计中曾给予我耐心指导和亲切关怀的老师及帮助过我的同学,正是由于他们的帮助和鼓励才使我能够在毕业设计过程中克服种种困难,最终顺利完成论文,他们的学识和为人也深深地影响着我。在此,请允许我再次向曾直接给予我多次指导的导师表示最忠诚的敬意。参考文献张朝晖结构分析及实例解析机械工业出版社邓凡平有限元分析自学手册人民邮电出版社王松等有限元分析理论与应用电子工业出版社正交金属切削温度场有限元分析英文韩昆,薛万夫,孙祥根等译,北京机械工业出版社,李企芳难加工材料的加工技术北京科学技术出版社。韩荣第,于启勋难加工材料切削加工机械工业出版社,陈斌,徐可伟,朱训生超声振动切削薄壁镜筒零件的研究机械工程师韩荣第,王杨,张文生编著现代机械加工新技术电子上业出版社,张伯荣,王奇浩过共晶铝硅活塞的超声振动切削新技术新工艺孙俊兰,姜大志切削温度与刀具磨损的关系机械工程师成刚虎,郑建名,肖继明,董卫明切削理论与实践组合机床与自动化加工技术王勇用有限差分法计算直角切削时刀具切削温度哈尔滨工业大学工学硕士学位论文焦定江陶瓷刀具切削区温度场的计算机模拟哈尔滨工业大学硕士学位论文付久炼金属短纤维的颤振切削制造轮转速减小。随着风轮转速的减小,发电机的功率不断修正,沿曲线变化。随着风轮转速降低,风轮功率与发电机功率之差减小,最终二者将在点交汇。转速恒定区如果保持定,即使没有达到额定功率,发电机最终将达到其转速极限,此后风力机进入转速恒定区。在这个区域,随着风速的增大,发电机转速保持恒定,功率在到达极限之前直增大,风力机在较小的兄区工作。功率恒定区随着功率的增大,发电机最终将达到其功率的极限。在功率恒定区,改变风轮桨叶的节距角,使值迅速降低,从而保持功率不变。第四章变桨距变速风力发电机组设计变桨距变速风力发电机组总控制策略根据变桨变速风力发电机组在不同区域的运行情况,将基本控制策略确定为低于额定风速时,跟踪曲线,以获得最大能量高于额定风速时,跟踪曲线,并保持输出稳定。假设起动前发电机组的桨叶节距角处于恒定角度。当风速达到起动风速后,风轮转速由零增大到发电机可以切入的转速,值不断上升,风力发电机组开始作发电运行。通过对发电机转速进行控制,风力发电机组逐渐进入恒定区,这时机组在最佳状态下运行。随风速增大,转速也增大,最后达到个允许的最大值,这时,只要功率低于允许的最大功率,转速便保持恒定。达到功率极限后,发电机组进入功率恒定区,这时随风速的增大,必须使值减小,使叶尖速比减少的速度比在转速恒定区更快,从而使风力发电机组在较小的值下作恒功率运行。高于额定风速时,变速风力发电机组的变速能力主要用来提高传动系统的柔性。为了获得良好的动态特性和稳定性,在高于额定风速的条件下采用桨叶节距控制能够取得更为理想的效果。因为在高于额定风速时,我们追求的是稳定的功率输出,采用变桨距调节,可以限制转速变化的幅度。当桨叶节距角向增大方向变化时,值得到了迅速有效的调整,功率为最大允许值。低于额定风速时,采用控制器改变发电机定子电压,以此调节发电机反力矩来改变转速,选取,,桨叶节距角最初被置为。高于额定风速时,采用控制器调节桨叶节距角来改变值,选取,,。当风速变化时,各种风况下输出功率和发电机转速的仿真结果如下所示当风速变化时,各种风况下输出功率和发电机转速的仿真结果如下所示当风速时,即风力发电机达到额定功率后,异步电动机的输出功率和转速的仿真如下图图所示。从仿真结果可以看出在低风速和高风速的起始阶段,输出功率和发电机转速都有定程度的超调和波动,尤其是在高风速时,输出功率超过允许的最大值。而且整个系统在控制时达到稳态所需的时间较长。这是因为控制器过分依赖于控制对象的模型参数及理论推导假设条件太严格,对于模型参数变化范围大非线性多变量的系统,难以满足要求。为了让风力发电机能够平稳的运行,并减少磨损延长寿命,设计好的控制器对风力发电机组进行控制是很必要的。本章小结本章介绍了变桨距变速风力发电机组并制定了总的控制策略,在建立了数学模型的基础上,设计了控制器并进行了仿真,结果未能达到满意效果,还需设计理想的控制器。第五章结论风力发电是涉及空气动力学自动控制机械传动电机学力学材料学等多学科的综合性高技术系