本方式般指调制信号是离散的,而载波是连续波的调制方式。它有四种基本形式振幅键控移频键控移相键控和差分移相键控。振幅键控用数字调制信号控制载波的通断。如在二进制中,发时不发送载波,发时发送载波。有时也把代表多个符号的多电平振幅调制称为振幅键控。振幅键控实现简单,但抗干扰能力差。移频键控用数字调制信号的正负控制载波的频率。当数字信号的振幅为正时载波频率为,当数字信号的振幅为负时载波频率为。有时也把代表两个以上符号的多进制频率调制称为移频键控。移频键控能区分通路,但抗干扰能力不如移相键控和差分移相键控。移相键控用数字调制信号的正负控制载波的相位。当数字信号的振幅为正时,载波起始相位取当数字信号的振幅为负时,载波起始相位取。有时也把代表两个以上符号的多相制相位调制称为移相键控。移相键控抗干扰能力强,但在解调时需要有个正确的参考相位,即需要相干解调。差分移相键控利用调制信号前后码元之间载波相对相位的变化来传递信息。通常规定传送时后码元相对于前码元的载波相位变化,而传送时前后码元之间的载波相位不发生变化。因此,解调时只看载波相位的相对变化。而不看它的绝对相位。只要相位发生跃变,就表示传输。若相位无变化,则传输的是。差分移相键控抗干扰能力强,且不要求传送参考相位,因此实现较简单。脉冲调制有两种含义第种是指用调制信号控制脉冲本身的参数幅度宽度相位等,使这些参数随调制信号变化。此时,调制信号是连续波,载波是重复的脉冲序列。第二种是指用脉冲信号控制高频振荡的参数。此时,调制信号是脉冲序列,载波是高频振荡的连续波。通常所说的脉冲调制都是指上述第种情况。脉冲调制可分为模拟式和数字式两类。模拟式脉冲调制是指用模拟信号对脉冲序列参数进行调制,有脉幅调制脉宽调制脉位调制和脉频调制等。数字式脉冲调制是指用数字信号对脉冲序列参数进行调制,有脉码调制和增量调制等。由于脉冲序列占空系数很小,即个周期的绝大部分时间内信号为值,因而可以插入多路其他已调脉冲序列,实现时分多路传输。已调脉冲序列还可以用各种方法去调制高频振荡载波。常用的脉冲调制有以下几种。脉幅调制用调制信号控制脉冲序列的幅度,使脉冲幅度在其平均值上下随调制信号的瞬时值变化。这是脉冲调制中最简单的种。实现调幅波包络与调制信号呈线性关系。若用于民用通信,个电台用几十万千瓦的功率发射,却可以是千千万万的收听者能够用简单的接收设备受到广播信号,这样,是收音机的成本降低的社会效益,是非常可观的。振幅调制可分为双边带振幅调制双边带抑制载波振幅调制单边带调制正交振幅调制残留边带调幅正交部分响应信号。脉幅调制是里夫在世纪年代发明的,在第二次世界大战中期已付之实用。但后来发现,脉幅调制的已调波在传输途径中衰减,抗干扰能力差,所以现在很少直接用于通信,往往只用作连续信号采样的中间步骤。脉宽调制用调制信号控制脉冲序列中各脉冲的宽度,使每个脉冲的持续时间与该瞬时的调制信号值成比例。此时脉冲序列的幅度保持不变,被调制的是脉冲的前沿或后沿,或同时是前后两沿,使脉谢本研究及学位论文是在我的导师谢老师的亲切关怀和悉心指导下完成的。他严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。从课题的选择到项目的最终完成,谢老师都始终给予我细心的指导和不懈的支持。大学期间,谢老师不仅在学业上给我以精心指导,同时还在思想生活上给我以无微不至的关怀,在此谨向谢老师致以诚挚的谢意和崇高的敬意。感谢我的班主任许春冬老师,谢谢他在这四年中为我们全班所做的切,他不求回报,无私奉献的精神很让我感动,再次向他表示由衷的感谢。在这四年的学期中结识的各位生活和学习上的挚友让我得到了人生最大的笔财富。在此,也对他们表示衷心感谢。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长同学朋友给了我无言的帮助,在这里请接受我诚挚的谢意,最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们,多,最明显的是加强了抗干扰性能容易加密等等。数字调制的目的是使所传送的信息能够更好的适应于信道特性,以达到最有效最可靠的传送。在移动通信中,由于电波传输的条件极其恶劣,使接受信号幅度发生很大变化,衰减幅度达到最小。因此,在移动通信中必须采用干扰能力强的调制方式。频率调制在抗干扰和抗衰落能力上优于幅度调制,但频率调制也存在着固有的缺点需要站用较大的带宽,同时还存在着门限效应。数字调制用星座图来描述,星座图中定义了种调制技术的两个基本参数信号分布与调制数字比特之间的映射关系。星座图中规定了星座点与传输比特间的对应关系,这种关系称为映射,种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。移动通信的数字调制的要求必须采用抗干扰能力强的调制方式。尽可能提高频铺利用率,站用的带宽较窄,带外幅度要小采用调制方式,占用频带尽可能宽,但单位频谱所容纳的用户较多采用方式。具有良好的误码性。较高的带宽效率。恒定包络。成本低,易于实现。当然要同时实现这些最佳的特性是不可能的,因为每种特性都有其局限性,且互相之间会有矛盾。例如,要获得较高的带宽效率,可选用多电平调制,但他要求线性放大,因此会使功率效率较低,而且已调波的包络变化大。如果采用恒包络调制,因要求非线性放大,所以它具有高的功率效率,但又会引起较大的带外辐射。因此,只能折中考虑上述要求。般的数字调制技术,如幅度键控移相键控和移频键控,因传输效率低而无法满足移动通信的要求。为此,需要专门研究些抗干扰能力强误码性能好频谱利用率高的调制技术,尽可能的提高单位频带内传输数据的比特速率,以适用于移动通信的要求。为适应目前移动通信使用的信道带宽,提出了各种窄带数字调制方式。目前已在数字蜂窝移动通信系统中得到广泛应用的有正交相移键控正交调幅和最小移频键控高斯最小移频键控等方式。目前,在北美和日本的数字蜂窝移动通信系统中,采用高斯滤波最小频移键控。总之,采用调制技术的最终目的,就是使调制后的信号对干扰有较强的抵抗作用,同时对相邻的信道信号干扰较小,解调方便且易于集成。数字调制的基冲持平均速度大于旋转磁场的速度,这主要发生在制动和突然转向时,产生过冲,引起失步。总之,在为步进电机编写控制程序时,要有加速段,匀速段和减速段程序。伺服电机的驱动方式设计所用的伺服电机是舵机,它主要由舵盘减速齿轮组位置回馈电位计直流电机和控制电路板等组成,其主要特点是低成本高扭矩重量轻,时无负荷动作时消费电流为,输出扭矩为,动作速度为秒度,晃动量最大值为。舵机工作原理如下控制信号控制电路板电机转动齿轮组减速舵盘转动控制电路板回馈。其工作原理见图。最小占空比右转最大占空比左转信号伺服电机电气接口图舵机工作原理图脉宽调制模块发送定周期的高电平到舵机中的控制电路板,控制电路板通过对比脉宽调制模块之中高电平的脉冲宽度来决定伺服电机的正反转。当伺服电机反向转动时,减速齿轮组带动指针向左运动当伺服电机正向转动时,减速齿轮组带动指针向右运动。如图所示,指针安装在伺服电机上,随着舵机起转动。图舵机总线技术汽车应用多路传输技术的背景随着汽车电子技术的不断发展,汽车上电控系统的数量不断增多,而且功能也越来越复杂。很多汽车采用了多个芯片,如奔驰采用了多个模块。每个都需要与多个传感器执行器之间发生通信,而每个输入输出信号又可能与多个电脑之间发生通信。如果每个电控系统都独立配置整套相应的传感器执行器,那么将有大量的线束插接件密布于汽车的各个部位,这样不仅会增大汽车生产车间组装工人的装配困难如穿过控制面板的线束,般线束和仪表板后部的线束以及车身重量,而且也会增加了汽车售后维修人员对故障诊断维修的难度,降低汽车电子电器系统的工作可靠性。另外,为了提高汽车综合控制的准确性,综合控制系统也迫切需要输入输出信号数据共享。当电控模块共享输入信息时,就能对汽车进行更为复杂的控制。例如,驾驶员车门控制模块就可利用来自于自动变速器控制模块的变速挡挡位传感器信号和来自控制模块的车速信号去控制车门的自动落锁。过去,汽车通常采用点对点的通信方式,用线束直接将电子控制单元及负载设备连接起来。随着电子设备的不断增加,势必造成导线数量的不断增多,从而使得在有限的汽车空间内布线越来越困难,限制了功能的扩展。同时导线质量每增加,油耗会增加。此外,电控单元并不仅仅是与负载设备简单地连接,更多地是与外围设备及其它电控单元进行信息交流,并经过复杂的控制运算,发出控制指令,这些是不能通过简单地连接所能完成的。而单从线束本身来说,它也是汽车电子系统中成本较高连接复杂的部件之。因单位允许时间周期允许脉冲宽度,高电平允许上升和下降时间地址建立时间数据延迟时间数据建立时间数据保持时间地址保持时间写操作和读操作对液晶显示进行读写操作是都是在下降沿进行,具体方式见图。图读写操作模块引脚功能液晶共有个引脚,其中引脚为背景灯,其余引脚功能见表。表模块引脚功能引线号符号名称功能接地电路电源液晶驱动电压保证电压差寄存器选择信号数据寄存器指令寄存器读写信号读写片选信号下降沿触发,锁存数据数据线数据传输寄存器选择功能液晶显示器在进行数据写入时应本方式般指调制信号是离散的,而载波是连续波的调制方式。它有四种基本形式振幅键控移频键控移相键控和差分移相键控。振幅键控用数字调制信号控制载波的通断。如在二进制中,发时不发送载波,发时发送载波。有时也把代表多个符号的多电平振幅调制称为振幅键控。振幅键控实现简单,但抗干扰能力差。移频键控用数字调制信号的正负控制载波的频率。当数字信号的振幅为正时载波频率为,当数字信号的振幅为负时载波频率为。有时也把代表两个以上符号的多进制频率调制称为移频键控。移频键控能区分通路,但抗干扰能力不如移相键控和差分移相键控。移相键控用数字调制信号的正负控制载波的相位。当数字信号的振幅为正时,载波起始相位取当数字信号的振幅为负时,载波起始相位取。有时也把代表两个以上符号的多相制相位调制称为移相键控。移相键控抗干扰能力强,但在解调时需要有个正确的参考相位,即需要相干解调。差分移相键控利用调制信号前后码元之间载波相对相位的变化来传递信息。通常规定传送时后码元相对于前码元的载波相位变化,而传送时前后码元之间的载波相位不发生变化。因此,解调时只看载波相位的相对变化。而不看它的绝对相位。只要相位发生跃变,就表示传输。若相位无变化,则传输的是。差分移相键控抗干扰能力强,且不要求传送参考相位,因此实现较简单。脉冲调制有两种含义第种是指用调制信号控制脉冲本身的参数幅度宽度相位等,使这些参数随调制信号变化。此时,调制信号是连续波,载波是重复的脉冲序列。第二种是指用脉冲信号控制高频振荡的参数。此时,调制信号是脉冲序列,载波是高频振荡的连续波。通常所说的脉冲调制都是指上述第种情况。脉冲调制可分为模拟式和数字式两类。模拟式脉冲调制是指用模拟信号对脉冲序列参数进行调制,有脉幅调制脉宽调制脉位调制和脉频调制等。数字式脉冲调制是指用数字信号对脉冲序列参数进行调制,有脉码调制和增量调制等。由于脉冲序列占空系数很小,即个周期的绝大部分时间内信号为值,因而可以插入多路其他已调脉冲序列,实现时分多路传输。已调脉冲序列还可以用各种方法去调制高频振荡载波。常用的脉冲调制有以下几种。脉幅调制用调制信号控制脉冲序列的幅度,使脉冲幅度在其平均值上下随调制信号的瞬时值变化。这是脉冲调制中最简单的种。实现调幅波包络与调制信号呈线性关系。若用于民用通信,个电台用几十万千瓦的功率发射,却可以是千千万万的收听者能够用简单的接收设备受到广播信号,这样,是收音机的成本降低的社会效益,是非常可观的。振幅调制可分为双边带振幅调制双边带抑制载波振幅调制单边带调制正交振幅调制残留边带调幅正交部分响应信号。脉幅调制是里夫在世纪年代发明的,在第二次世界大战中期已付之实用。但后来发现,脉幅调制的已调波在传输途径中衰减,抗干扰能力差,所以现在很少直接用于通信,往往只用作连续信号采样的中间步骤。脉宽调制用调制信号控制脉冲序列中各脉冲的宽度,使每个脉冲的持续时间与该瞬时的调制信号值成比例。此时脉冲序列的幅度保持不变,被调制的是脉冲的前沿或后沿,或同时是前后两沿,使