以通过简单地理论证明,也可以从下面的图示中明显地观察到图绘制图的程序文件如下,,,,,数列的敛散性有何见解下面的图可提供个直观的启示图图直观地提示我们数列是单调增的随着的增加,的增长速度趋近于零,事实上,利用程序文件,,可以进步地验证,,,,的增长速度曲线如图所示。图上述数据和通过实验得到的曲线揭示了数列收敛的可能性,事实上,数学家已经在理论上严格证明了数列的极限存在性,其极限值就是著名的常数,目前人们还不知道常数是有理数还是无理数。问题与实验能否给出数列收敛的几何解释当然这需要首先体会到特别是的几何意义。问题与实验根据你对数列收敛的几何解释如果你确实得到了它的几何解释,你络线,总的整流输出电压是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。控制角为时当触发角改变时,电路的工作情况将发生变化,与控制角为时的情况相比,周期中波形仍由段线电压构成,区别在于,晶闸管起始导通时刻推迟了,组成的每段线电压因此推迟设置晶闸管的导通角度为,仿真,得到如图所示的波形所示图只有直晶闸管故障仿真波形对应脉冲波形如图所示图只有直晶闸管故障脉冲波形此时,每个周期连续少两个波头,两个波头为,由于正常工作时每个桥臂导通,由此可判定此情况为有个桥臂不导通,即有个晶闸管发生故障。接在同相电压的两个晶闸管故障故障图形如图所示图同相电压的两个晶闸管故障仿真波形对应脉冲波形如图所示图同相电压的两个晶闸管故障脉冲波形此时,每个半周期有个波头,再连续少两个,个周期共少了个波头,三相桥式电路应输出个波头,此时只有两相导电,另相的两个桥臂不通,即接在同相的两个晶闸管故障。同半桥中的两个晶闸管故障故障图形如图所示图同半桥中两只晶闸管故障仿真波形对应脉冲波形如图所示图同半桥中两只晶闸管故障脉冲波形此时,每个周期有两个连续波头,接着少了个连续波头,由于正常情况使输出波形个波头的顺序可判定接在同半桥的两个桥臂不导通。交叉的两个晶闸管故障故障波形如图所示图交叉的两只晶闸管故障仿真波形对应脉冲波形如图所示图交叉的两只晶闸管故障脉冲波形此时,每个周期连续输出个波头,接着连续少了个波头,容易得出该图对应不同相的交叉的两个晶闸管故障。总结本文对三相桥式可控整流电路进行了理论分析,建立了基于工具箱的三相桥式可控整流电路的仿真模型,并对其进行比较研究。对全控电路带电阻负载时的工作情况,验证了当触发角时,负载电流连续当时,负载电流不连续。但带电阻电感性负载时负载电压会出现负的部分同时验证了触发角的移相范围是。通过仿真分析也验证了文中所建模型的正确性。另外,本文还把三相可控整流电路在直流电机调速的应用做了仿真分析,最后对三相整流电路晶闸管进行了故障分析。本次研究中应用仿真,避免了常规分析方法中繁琐的绘图和计算过程,得到了种直观快捷分析整流电路的新方法。此外,应用进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直观的观察仿真结果,是种值得进步应用推广的功能强大的仿真软件。参考文献徐以荣,冷增祥电力电个级数的前项和几乎停止增长而前两个级数的前项和仍有明显的增长趋势增长速度是多少。让我们进步讨论调和级数的发散情形。大家已经知道数列是发散的,现在我们考察级数,的敛散性,先思考下,这是两个发散级数的差,在没有具体讨论之前你演示动点趋近于原点的动态过程。这两个文件如下,,,做不等式估计的意义有何理解给出的不等式估计特别是精确的不等式估计可能用于那些方面问题与实验通过对问题和问题的讨论,你认为级数和积分特别是和无穷区间广义积分之间有无内在的本质联系如果你认为有联系,它们之间的联系是什么样的关于函数项级数的简单实验与讨论首先我们研究下的图象,问题与实验通过此例的图象以及问题本身的形式,你是否能够得到在的情况下此例有更简单的表达式并是否得到其内在的联系如果有,对于你的想法给出充分的证明,关于级数的实验与讨论般了解我们知道以为周期的函数,如果满足条件,那么就可以展成级数,并且在区间,上的连续点处级数的三角形式和指数形式分别为其中是基频,是第项的频率,以及,征问题与实验个点对应,与下个点,之间靠近吗如果不靠近,那么与,之间呢满足什么条件其是靠近的问题与实验若取等又是什么情况我们从中能得到什么新发现取呢,,是相应形式级数的系数,问题与实验选择适当的函数将其展成相应的级数,通过实验观察随着展开项的增加其逼近程度如何关于级数的简单实验及其进步的问题般了解展式是高等数学中非常重要的个部分,无论对其他问题理论的充实还是对些问题的实际求解,都发挥着举足轻重的作用。因而我们在掌握其理论的同时,如果能进步了解其内在的实质,就能将其作用发挥得淋漓尽致。最后,借助于直观的图象,不仅可以帮助我们理解和把握其数学性质,而且对进步掌握其内在本质起到定的作用。展式的般形式为,特殊地,若,称其为麦克劳林展式,几种典型你所记得的有哪几种的麦克劳林展式在实际应用中很有作用,首先以的麦克劳林展式为例,研究其随着展开项的增加其逼近程度二项逼近,三项逼近,四项逼近问题与实验选择其他典型的函数如等,通过实验,进步认识展式及其性质,问题与实验如何从几何的角度理解展开和展式基于这样的考虑你是否还能找到其他典型的函数展开,使其在些方面具有良好的性质什么性质附加问题简单的小问题引起的大思考最后,我们从在附近的图象再研究其些性质问题与实验这些曲线有何数做为描述变量间关系的种数学模型,在理论分析和科学计算方面起着重要的作用。借助于功能强大的科学计算软件进行实验和研究,可以得到直观的认识。为了能有效地使用级数这工具于科学研究和工程实践,正确地理解和把握级数的基本性质是首要的前提。例考察级数,级数的前项和,其收敛性条件为收敛发散,并且在的情况下,越大的收敛速度越快,越小的收敛速度越慢,这事实即可子学志功能的设计通道选择功能可以实现在波形器波形图上显示不同通道的波形,可以实现两路信号同时显示以及两个通道单独显示。实现大体程序框图如图所示。通道选择开关作为的选择判断,在选择判断,中,根据不同的通道选择选择不同的输出传入波形图显示界面。在单双选择通道中,可以根据不同的情况选择示波器是单通道输入好是双通道输入,利用条件结构分别设置这两种情况。图通道选择功能的程序框图通道信号输入功能的设计在虚拟双通道示波器中,信号的产生是由数据采集卡采集后传入计算机再输入双通道示波器程序而实现的,本章所设计的信号则是模拟的仿真信号,在设置些参数后由系统产生模拟输入信号,在通过通道选择输出波形。在模拟信号的参数设置中,主要有信号的频率幅值相角采样信息等,采样信息包括采样频率和采样数。我们将这些仿真信号的参数直接设置,使之成为默认数值,然后产生相应的信号。信号产生的程序框图如图所示。水平分度调节处理功能块水平分度调节功能块处理后所产生的数据信息作为波形图控件的水平分度范围的设置数值。在具体实现这个功能块的时候,首先将选择的水平分度旋钮的选择数值作为的分支选择条件在本章中使用个离散数作为调节数值再根据不同的选择条件,再功能块中捆绑不同的数据构成簇,将该簇作为波形图控件属性节点的水平分度范围属性的设定值。分别在不同的通道中设置不同的水平调节块来对应不同通道信号的调节。图为水平分度调节处理功能块的程序框图。图通道信号输入功能的程序框图图水平分度调节功能的程序框图竖直幅值分度调节处理功能块如图所示为竖直幅值分度调节功能块的程序框图。同样,在程序功能的处理过程中,将数值旋钮选择的幅值分度数值作为程序块中的选择条件,根据不同的选择条件,选择功能块用不同的数据捆绑成簇,作为波形图属性引用节点的竖直分度范围属性的设定值。捆绑成簇的几个数据代表的意义分别为输入信号的竖直分度的最小值最大值增量次增量和起始值。图竖直幅值分度调节功能的程序框图存储功能的设计图为波形存储功能的程序框图,能够对测量的波形选择进行存储。该功能主要是通过两个条件结构来实现的,外层条件结构控制是否保存,内层条件结构决定波形保存的形式,分别是保存为文本和保存为波形文件。波形存储功能属于对示波器功能的继续完善,如果需要,还可以继续在该模块上添加些相关的功能,例如波形显示波形回放数据打印等功能。图波形存储功能的程序框图波形仿真部分仿真部分简介本虚拟示波器的设计是参阅通用的双通道台式数字存储示波器的功能,并月在仪器分析上有所扩展。仪器的主要功能包括波形显示波形调节波形存储等。以机为平台将设计好的虚拟信号发生器与虚拟示波器相连接。用虚拟信号发生器来产生不同频率和幅值的波形,通过虚拟示波器来显示测量处理和分析这些波形,来检测虚拟示波器的性能。实际上的虚拟示波器也应做到软件与硬件的连接,利用数据采集系统采集外界信号,再通过传感器单片机串口连接程序等连接与进行数据交互,但限于现实条件无法获得足够的硬件,所以在此我们用示波器测量的是仿真信号以通过简单地理论证明,也可以从下面的图示中明显地观察到图绘制图的程序文件如下,,,,,数列的敛散性有何见解下面的图可提供个直观的启示图图直观地提示我们数列是单调增的随着的增加,的增长速度趋近于零,事实上,利用程序文件,,可以进步地验证,,,,的增长速度曲线如图所示。图上述数据和通过实验得到的曲线揭示了数列收敛的可能性,事实上,数学家已经在理论上严格证明了数列的极限存在性,其极限值就是著名的常数,目前人们还不知道常数是有理数还是无理数。问题与实验能否给出数列收敛的几何解释当然这需要首先体会到特别是的几何意义。问题与实验根据你对数列收敛的几何解释如果你确实得到了它的几何解释,你络线,总的整流输出电压是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。控制角为时当触发角改变时,电路的工作情况将发生变化,与控制角为时的情况相比,周期中波形仍由段线电压构成,区别在于,晶闸管起始导通时刻推迟了,组成的每段线电压因此推迟设置晶闸管的导通角度为,仿真,得到如图所示的波形所示图只有直晶闸管故障仿真波形对应脉冲波形如图所示图只有直晶闸管故障脉冲波形此时,每个周期连续少两个波头,两个波头为,由于正常工作时每个桥臂导通,由此可判定此情况为有个桥臂不导通,即有个晶闸管发生故障。接在同相电压的两个晶闸管故障故障图形如图所示图同相电压的两个晶闸管故障仿真波形对应脉冲波形如图所示图同相电压的两个晶闸管故障脉冲波形此时,每个半周期有个波头,再连续少两个,个周期共少了个波头,三相桥式电路应输出个波头,此时只有两相导电,另相的两个桥臂不通,即接在同相的两个晶闸管故障。同半桥中的两个晶闸管故障故障图形如图所示图同半桥中两只晶闸管故障仿真波形对应脉冲波形如图所示图同半桥中两只晶闸管故障脉冲波形此时,每个周期有两个连续波头,接着少了个连续波头,由于正常情况使输出波形个波头的顺序可判定接在同半桥的两个桥臂不导通。交叉的两个晶闸管故障故障波形如图所示图交叉的两只晶闸管故障仿真波形对应脉冲波形如图所示图交叉的两只晶闸管故障脉冲波形此时,每个周期连续输出个波头,接着连续少了个波头,容易得出该图对应不同相的交叉的两个晶闸管故障。总结本文对三相桥式可控整流电路进行了理论分析,建立了基于工具箱的三相桥式可控整流电路的仿真模型,并对其进行比较研究。对全控电路带电阻负载时的工作情况,验证了当触发角时,负载电流连续当时,负载电流不连续。但带电阻电感性负载时负载电压会出现负的部分同时验证了触发角的移相范围是。通过仿真分析也验证了文中所建模型的正确性。另外,本文还把三相可控整流电路在直流电机调速的应用做了仿真分析,最后对三相整流电路晶闸管进行了故障分析。本次研究中应用仿真,避免了常规分析方法中繁琐的绘图和计算过程,得到了种直观快捷分析整流电路的新方法。此外,应用进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直观的观察仿真结果,是种值得进步应用推广的功能强大的仿真软件。参考文献徐以荣,冷增祥电力电