物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与阈值作比较,如果大于阈值,该像素点的灰度值用其梯度值表示,否则用个固定的灰度值表示。综上所述,图像锐化算法主要包括三方面内容算取合适的梯度算子如拉普拉斯算子根据所选用的梯度算子计算图像各点的灰度值,得出各像素点的梯度值根据个像素点的梯度值选取合适的处理方法。图像锐化的功能实现由于设计要求原因,本次设计主要只研究运用梯度算子来实现图像的锐化处理。首先绘制出梯度锐化实现的流程图,流程图如图子程序开始复制图像利用算子求出,方向上梯度求出图像梯度模值利用梯度模值与原图灰度值按比例相加得到锐化图像返回图梯度锐化流程图根据上述流程图,编程实现图像锐化功能。图像锐化前后效果图对比如图平均平滑第次梯度锐化第二次梯度锐化第三次梯度锐化图图像锐化前后对比图由上图可清晰的看到图像经过锐化处理后的变化。图像锐化使原本经过图像平滑后变得模糊的边界轮廓得到了改善,是图像的边缘变得清晰了。但是图像如果经过过度锐化图后两图以后,反而会使图像变得模糊。因此进行图像锐化时需进行适度锐化图像,从而更好的得到所需图像。区域生长图像分割概述图像分割的方法和种类非常多,有些分割算法可以直接用于大多数图像,而另些则只适用于特殊类别的图像。般采用的方法有边缘检测边界跟踪区域生长区域分离和聚合等。本次设计则只研究区域生长的图像分割方法。图像分割算法般给予图像灰度只的不连续性或其相似性。不连续性是给予图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测边界跟踪等算法相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割区域生长等。图像分割在科学研究和工程技术领域有着广泛的应用。在工业上,应用于矿藏分析无接触式检测产品的精度和纯度分析等在生物医学上,应用于计算机断层图像光透视核磁共振病毒细胞的自动检测和识别等交通上,应用于车辆检测车种识别车辆跟踪等另外,在机器人视觉神经网络身份鉴定图像传输等各个领域都有着广泛的应用。区域生长区域生长是根据事先定义的准则将像素或者子区域聚合成更大区域的过程。其基本思想是从组生长点开始生长点可以是单个像素,也可以为个小区域,将与该生长点性质相似的相邻像素或者区域与生长点合并,形成新的生长点,重复此过程直到不能生长为止。生长点和相邻区域的相似性判据可以是灰度值纹理颜色等多种图像信息。区域生长般有个步骤。选择合适的生长点。确定相似性准则即生长准则。确定生长停止条件。般来说,在无像素或者区域满足加入生长区域条件时,区域生长就会停止。图给出个区域生长的实例图为原图像,数字表示像素的灰度。的图像,由于直接进行提取区域,,,附录系统实现主程序读入图像生成对象,即打开选择图片对话框,选择图片后返回程序获得图片地址自带字符操作类转化为字符串读入图片图片备份读入图片标志显示图片判断是否有图片,生成类型对话框对象生成尺寸对话框对象,获取平滑类型,获取尺寸并判断平滑显示平滑后图像图像显示函数获取句柄获取图像框大小尺寸,判断读入图片以灰度为的像素为初始的生长点,记为,。在领域内,生长准则是待测点灰度值与生长带你灰度值相差为或者。那么,图所示,第次区域生长后,,与中心点灰度值相差都为,因而被合并。第二次生长后,如图所示被合并。第三次生长后,如图所示,被合并,至此,已经不存在满足生长准的的像素点,生长停止。原图像灰度矩阵生长点第次区域生长结果第二次区域生长结果第三次区域生长结果区域生长的优势和劣势优势区域生长通常能将具有相同特征的联通区域分割出来。区域生长能提供很好的边界信息和分割结果。区域生长的思想很简单,只需要若干种子点即可完成。在生长过程中的生长准则可以自由的指定。可以在同时刻挑选多个准则。劣势计算代价大。噪声和灰度不均可能会导致空洞和过分割。对图像中的阴影效果往往不是很好。区域生长的实现首先绘制出区域生长实现的流程图,如图所示子程序开始图像预处理锐化选择种子点迭代判断区域产生二值化图像返回图区域生长流程图根据上述流程图,可编程实现区域生长功能。在读入图片点击区域生长功能键以后,系统会自动弹出个名为的对话框,如图所示图点击区域生长按键后弹出的对话框此时,操作人员可以方便快捷的在该对话框中的图片上选择个所需点作为种子点进行区域生长功能的实现。种子点选择过后,程序会自动关闭该对话框回到主界面显示区域生长后的图片。图像区域生长后效果图如图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图图图像区域生长后效果图区域生长是经过在图像上选取个点作为第个种子点,并设定个阈值。然后将种子点的像素与周围点的灰度值相比较,他们的差值小于设定的阈值时就将其作为另个种子点这样循环比较下去,直到种子点周围点灰度差值大于阈值才停止。然后将满足条件即与种子点差值小于阈值的点记录并留下来在图像中显示,从而得到如图的区域生长后的图形。由图对比可见,当阈值为时得到的区域生长后的图形最接近完整的肝脏,所以在后面提取区域时运用阈值为的区域生长图进行提取,以便得到更好的肝脏提取效果图。但此区域生长方法有个缺陷,会使得到的图形产生很多小孔,这将由下个提取区域功能中加入个图像腐蚀功能来改善这缺陷。在编写区域生长的程序时需注意阈值的选择,如果阈值太大,容易导致溢出,使程序不能正常运行如果阈值太小,则无法得到所需的图像。提取区域提取区域的功能是在图像进行过区域生长以后,将区域生长后的二值图作为掩码,在原图中提取并显示出来,从而提取出了原图腹腔中的肝脏部分。提取区域后的图像如图所示图提取区域后的图像上图是未经过腐蚀直接进行提取区域后得到。最简单的方法就是用该点的梯度幅度代替该点的灰度。此方法的缺点就是增强的图像仅仅是灰度变换比较陡峭的边缘轮廓,而灰度变化比较平缓或者比较均匀的地方则呈现黑色。为了突出尺寸到水平或船形焊的位置。参考文献郑文伟,吴克坚机械原理第版北京高等教育出版社,丘宣怀机械设计第四版北京高等教育出版社,机械工程手册编辑委员会机械工程手册第五卷,第六卷等北京机械工业出版社,吴泽群,罗圣国机械设计课程设计手册北京高等教育出版社,汝元功,唐照明机械设计手册北京高等教育出版社,杨可桢,程光蕴机械设计基础北京高等教育出版社,杨可桢,程光蕴机械零件设计基础第版北京高等教育出版社,陈祝年焊接夹具机械工业出版社,秦曾煌电工学高等教育出版社周浩森焊接结构生产及装备上海交通大学龚桂义等机械设计课程设计指导书北京机械工业出版社龚桂义等机械设计课程设计图册北京机械工业出版社宋宝玉机械设计课程设计指导书高等教育出版社陈立德机械设计基础第二版高等教育出版社刘荣珍程耀东机械制图科学出版社刘鸿文材料力学高等教育出版社王纯祥焊接工装夹具设计及应用化学工业出版社张建勋现代焊接生产与管理机械工业出版社王宗街熔焊方法及设备机械工业出版社卢秉恒机械制造技术基础第三版机械工业出版社鸣谢本论文在老师的精心指导下完成的,从选题开展设计到论文修改,无不凝聚着魏伟悉心的指导和关怀,老师勤奋兢业的精神渊博的知识和严于利己宽以待人的为人处世方面都对我产生了深远的影响。老师在设计过程中对我无私的指导和帮助,以及他敏锐的科研思维和为人和善的作风,作者深表敬意。在此,谨向恩师表示深深的敬意和由衷的感谢。蜗轮喉圆半径,低速级蜗轮蜗杆设计材料选择由于是伸臂旋转减速机构较为重要,选蜗杆材料,表面淬火,硬度选蜗轮材料,金属模铸造。确定许用应力应力循环次数,查工具书得,,则选择齿数,根据传动比参考工具书,则。取,实际传动比按齿面接触疲劳强度设计查工具书得查工具书得载荷系数查工具书得。由于较低,估计取,由于载荷平稳,通过磨合可以改善偏载程度,所以取,所以载荷系数,而,查得,则按照接触强度要求查工具书可选出,。则中心距。验算初设参数原估计,选,合适。验算齿根弯曲疲劳强度查工具书得蜗轮当量齿数,于是查得齿形系数,,而,带入计算式可得满足弯曲疲劳强度的要求,所以传动件选择合适。蜗轮蜗杆几何尺寸的计算蜗杆齿顶圆直径,蜗杆齿根圆直径蜗杆齿宽蜗轮顶圆直径,蜗轮齿根圆直径蜗轮齿宽,蜗轮喉圆半径,轴的校核由上述计算可知对于工作台回转机构的三根轴来说,输出轴承受的扭矩最大,而轴和轴所承受的扭矩远远小于轴所承受的扭矩。所以,在轴的校核过程中只需校核轴。设为圆周力,为径向力,为轴向力。则查工具书得公式织总面积来表示。对滤油器过滤能力的要求,应结合滤油器在系统中的安装位置来考虑。如安装在液压泵供的自动加杆的传动比为。传动装置的实际传动比由于受到各种因素物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与阈值作比较,如果大于阈值,该像素点的灰度值用其梯度值表示,否则用个固定的灰度值表示。综上所述,图像锐化算法主要包括三方面内容算取合适的梯度算子如拉普拉斯算子根据所选用的梯度算子计算图像各点的灰度值,得出各像素点的梯度值根据个像素点的梯度值选取合适的处理方法。图像锐化的功能实现由于设计要求原因,本次设计主要只研究运用梯度算子来实现图像的锐化处理。首先绘制出梯度锐化实现的流程图,流程图如图子程序开始复制图像利用算子求出,方向上梯度求出图像梯度模值利用梯度模值与原图灰度值按比例相加得到锐化图像返回图梯度锐化流程图根据上述流程图,编程实现图像锐化功能。图像锐化前后效果图对比如图平均平滑第次梯度锐化第二次梯度锐化第三次梯度锐化图图像锐化前后对比图由上图可清晰的看到图像经过锐化处理后的变化。图像锐化使原本经过图像平滑后变得模糊的边界轮廓得到了改善,是图像的边缘变得清晰了。但是图像如果经过过度锐化图后两图以后,反而会使图像变得模糊。因此进行图像锐化时需进行适度锐化图像,从而更好的得到所需图像。区域生长图像分割概述图像分割的方法和种类非常多,有些分割算法可以直接用于大多数图像,而另些则只适用于特殊类别的图像。般采用的方法有边缘检测边界跟踪区域生长区域分离和聚合等。本次设计则只研究区域生长的图像分割方法。图像分割算法般给予图像灰度只的不连续性或其相似性。不连续性是给予图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测边界跟踪等算法相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割区域生长等。图像分割在科学研究和工程技术领域有着广泛的应用。在工业上,应用于矿藏分析无接触式检测产品的精度和纯度分析等在生物医学上,应用于计算机断层图像光透视核磁共振病毒细胞的自动检测和识别等交通上,应用于车辆检测车种识别车辆跟踪等另外,在机器人视觉神经网络身份鉴定图像传输等各个领域都有着广泛的应用。区域生长区域生长是根据事先定义的准则将像素或者子区域聚合成更大区域的过程。其基本思想是从组生长点开始生长点可以是单个像素,也可以为个小区域,将与该生长点性质相似的相邻像素或者区域与生长点合并,形成新的生长点,重复此过程直到不能生长为止。生长点和相邻区域的相似性判据可以是灰度值纹理颜色等多种图像信息。区域生长般有个步骤。选择合适的生长点。确定相似性准则即生长准则。确定生长停止条件。般来说,在无像素或者区域满足加入生长区域条件时,区域生长就会停止。图给出个区域生长的实例图为原图像,数字表示像素的灰度。的图像,由于直接进行提取区域,,,附录系统实现主程序读入图像生成对象,即打开选择图片对话框,选择图片后返回程序获得图片地址自带字符操作类转化为字符串读入图片图片备份读入图片标志显示图片判断是否有图片,生成类型对话框对象生成尺寸对话框对象,获取平滑类型,获取尺寸并判断平滑显示平滑后图像图像显示函数获取句柄获取图像框大小尺寸,判断读入图片