1、“.....最简单的方法就是用该点的梯度幅度代替该点的灰度。此方法的缺点就是增强的图像仅仅是灰度变换比较陡峭的边缘轮廓,而灰度变化比较平缓或者比较均匀的地方则呈现黑色。为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与阈值作比较,如果大于阈值,该像素点的灰度值用其梯度值表示,否则用个固定的灰度值表示。综上所述,图像锐化算法主要包括三方面内容算取合适的梯度算子如拉普拉斯算子根据所选用的梯度算子计算图像各点的灰度值,得出各像素点的梯度值根据个像素点的梯度值选取合适的处理方法。图像锐化的功能实现由于设计要求原因,本次设计主要只研究运用梯度算子来实现图像的锐化处理。首先绘制出梯度锐化实现的流程图,流程图如图子程序开始复制图像利用算子求出,方向上梯度求出图像梯度模值利用梯度模值与原图灰度值按比例相加得到锐化图像返回图梯度锐化流程图根据上述流程图,编程实现图像锐化功能。图像锐化前后效果图对比如图平均平滑第次梯度锐化第二次梯度锐化第三次梯度锐化图图像锐化前后对比图由上图可清晰的看到图像经过锐化处理后的变化。图像锐化使原本经过图像平滑后变得模糊的边界轮廓得到了改善,是图像的边缘变得清晰了......”。
2、“.....反而会使图像变得模糊。因此进行图像锐化时需进行适度锐化图像,从而更好的得到所需图像。区域生长图像分割概述图像分割的方法和种类非常多,有些分割算法可以直接用于大多数图像,而另些则只适用于特殊类别的图像。般采用的方法有边缘检测边界跟踪区域生长区域分离和聚合等。本次设计则只研究区域生长的图像分割方法。图像分割算法般给予图像灰度只的不连续性或其相似性。不连续性是给予图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测边界跟踪等算法相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割区域生长等。图像分割在科学研究和工程技术领域有着广泛的应用。在工业上,应用于矿藏分析无接触式检测产品的精度和纯度分析等在生物医学上,应用于计算机断层图像光透视核磁共振病毒细胞的自动检测和识别等交通上,应用于车辆检测车种识别车辆跟踪等另外,在机器人视觉神经网络身份鉴定图像传输等各个领域都有着广泛的应用。区域生长区域生长是根据事先定义的准则将像素或者子区域聚合成更大区域的过程。其基本思想是从组生长点开始生长点可以是单个像素,也可以为个小区域......”。
3、“.....形成新的生长点,重复此过程直到不能生长为止。生长点和相邻区域的相似性判据可以是灰度值纹理颜色等多种图像信息。区域生长般有个步骤。选择合适的生长点。确定相似性准则即生长准则。确定生长停止条件。般来说,在无像素或者区域满足加入生长区域条件时,区域生长就会停止。图给出个区域生长的实例图为原图像,数字表示像素的灰度。以灰度为的像素为初始的生长点,记为,。在领域内,生长准则是待测点灰度值与生长带你灰度值相差为或者。那么,图所示,第次区域生长后,,与中心点灰度值相差都为,因而被合并。第二次生长后,如图所示被合并。第三次生长后,如图所示,被合并,至此,已经不存在满足生长准的的像素点,生长停止。原图像灰度矩阵生长点第次区域生长结果第二次区域生长结果第三次区域生长结果区域生长的优势和劣势优势区域生长通常能将具有相同特征的联通区域分割出来。区域生长能提供很好的边界信息和分割结果。区域生长的思想很简单......”。
4、“.....在生长过程中的生长准则可以自由的指定。可以在同时刻挑选多个准则。劣势计算代价大。噪声和灰度不均可能会导致空洞和过分割。对图像中的阴影效果往往不是很好。区域生长的实现首先绘制出区域生长实现的流程图,如图所示子程序开始图像预处理锐化选择种子点迭代判断区域产生二值化图像返回图区域生长流程图根据上述流程图,可编程实现区域生长功能。在读入图片点击区域生长功能键以后,系统会自动弹出个名为的对话框,如图所示图点击区域生长按键后弹出的对话框此时,操作人员可以方便快捷的在该对话框中的图片上选择个所需点作为种子点进行区域生长功能的实现。种子点选择过后,程序会自动关闭该对话框回到主界面显示区域生长后的图片。图像区域生长后效果图如图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图当阈值为时的区域生长图图图像区域生长后效果图区域生长是经过在图像上选取个点作为第个种子点,并设定个阈值。然后将种子点的像素与周围点的灰度值相比较,他们的差值小于设定的阈值时就将其作为另个种子点这样循环比较下去,直到种子点周围点灰度差值大于阈值才停止......”。
5、“.....从而得到如图的区域生长后的图形。由图对比可见,当阈值为时得到的区域生长后的图形最接近完整的肝脏,所以在后面提取区域时运用阈值为的区域生长图进行提取,以便得到更好的肝脏提取效果图。但此区域生长方法有个缺陷,会使得到的图形产生很多小孔,这将由下个提取区域功能中加入个图像腐蚀功能来改善这缺陷。在编写区域生长的程序时需注意阈值的选择,如果阈值太大,容易导致溢出,使程序不能正常运行如果阈值太小,则无法得到所需的图像。提取区域提取区域的功能是在图像进行过区域生长以后,将区域生长后的二值图作为掩码,在原图中提取并显示出来,从而提取出了原图腹腔中的肝脏部分。提取区域后的图像如图所示图提取区域后的图像上图是未经过腐蚀直接进行提取区域后得到的图像,由于直接进行提取区域,,,附录系统实现主程序读入图像生成对象,即打开选择图片对话框,选择图片后返回程序获得图片地址自带字符操作类转化为字符串读入图片图片备份读入图片标志显示图片判断是否有图片,生成类型对话框对象生成尺寸对话框对象,获取平滑类型,获取尺寸并判断平滑显示平滑后图像图像显示函数获取句柄获取图像框大小尺寸......”。
6、“.....刘黎会计电算化工作中存在的问题及对策辽宁经济,刘志会计电算化的现状与发展趋势太原城市职业技术学院学报,杨道策会计电算化的现状与发展之我所见市场周刊,任晓红电算化会计信息系统对财务会计的影响山西经济管理干部学院学报,王冬梅会计电算化的现状和发展趋势商场现代化学术版,钱冰玉会计电算化目前存在的问题及对策山西煤炭管理干部学院学报,董金艳浅析会计电算化在我国的发展黑龙江对外经贸,丛彪宋秀芬我国会计电算化存在的问题及对策税务与经济黎大均会计电算化发展中存在的问题及对策沿海企业与科技,陈静目前会计电算化存在的主要问题及对策甘肃科技纵横,更深层发展,是我国会计电算化工作面临的重大课题。要彻底完善我国会计电算化,需要大家的共同努力。要重视电算化工作我国电算化事业起步较晚,人们的思维观念还未充分认识到电算化的意义及重要性。多数单位电算化都是仅仅从减轻会计人员负担提高核算效率方面入手,使现有会计提供的信息不能及时有效地为企业决策及管理服务。我们必须认识到会计电算化不仅改变了会计核算方式数据储存形式,数据处理程序和方法,而且改变了会计内部控制与审计的方法和技术......”。
7、“.....提高整个会计工作水平。进而推动了会计理论与会计技术的进步发展完善,促进了会计管理制度的改革,是整个会计理论研究与会计实务的次根本性变革。二加强会计电算化的管理,完善会计电算化的配套法规鉴于财务软件处理对象的特殊性,处理结果要求高度可靠,在满足致性安全性等普通要求的同时,必须符合会计淮则和有关的法律法规,加强电算化会计系统宏观管理。三建立通用统的财务软件模式目前企业信息化建设的方向是实现对企业物流资金流和信息流体化集成化的管理。财务软件日益成为企业全面管理软件中的财务管理模块组成部分,所以,要求现有的财务软件应有很好的融合理论与开发技术,能够实现不同系统层次的数据转换。要做到这点,首先,应建立个通用统的财务软件模式。在该协议中应明确规定相同的数据接口或者规定公共的转换接口,提高数据的标准接口技术,比如输入输出数据库名称格式类型字段名称等,从而实现不同的数据可以相互转换,进而被识别和接受,能够在不同软件系统下直接使用。其次,应由相关的财政组织部门协调各单位情况,提供个适应大多数单位情况的会计电算化模式,各单位遵照执行,使各单位有共同的工作方式......”。
8、“.....建立国家电算会计软件,将统的制度和数据口径统在软件之中。四提高会计人员的业务素质,加大对会计电算化人才的培养力度拓宽渠道,培养人才,是提高会计电算化人才素质的关键。要进步改革人才教育培养的相关制度,多方面多形式多渠道培养会计电算化所需各个层次的人才。相关的大专院校,要根据时代需要,及时调整专业设置和培养方向,把握人才市场需求的发展趋势。为社会培养既懂计算机知识,又懂会计和企业经营管理的复合型人才,重点掌握会计电算化应用年将掀起会计电算化知识培训的热潮,并为全面普及会计电算化奠定人才基片。最简单的方法就是用该点的梯度幅度代替该点的灰度。此方法的缺点就是增强的图像仅仅是灰度变换比较陡峭的边缘轮廓,而灰度变化比较平缓或者比较均匀的地方则呈现黑色。为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与阈值作比较,如果大于阈值,该像素点的灰度值用其梯度值表示,否则用个固定的灰度值表示。综上所述,图像锐化算法主要包括三方面内容算取合适的梯度算子如拉普拉斯算子根据所选用的梯度算子计算图像各点的灰度值,得出各像素点的梯度值根据个像素点的梯度值选取合适的处理方法......”。
9、“.....本次设计主要只研究运用梯度算子来实现图像的锐化处理。首先绘制出梯度锐化实现的流程图,流程图如图子程序开始复制图像利用算子求出,方向上梯度求出图像梯度模值利用梯度模值与原图灰度值按比例相加得到锐化图像返回图梯度锐化流程图根据上述流程图,编程实现图像锐化功能。图像锐化前后效果图对比如图平均平滑第次梯度锐化第二次梯度锐化第三次梯度锐化图图像锐化前后对比图由上图可清晰的看到图像经过锐化处理后的变化。图像锐化使原本经过图像平滑后变得模糊的边界轮廓得到了改善,是图像的边缘变得清晰了。但是图像如果经过过度锐化图后两图以后,反而会使图像变得模糊。因此进行图像锐化时需进行适度锐化图像,从而更好的得到所需图像。区域生长图像分割概述图像分割的方法和种类非常多,有些分割算法可以直接用于大多数图像,而另些则只适用于特殊类别的图像。般采用的方法有边缘检测边界跟踪区域生长区域分离和聚合等。本次设计则只研究区域生长的图像分割方法。图像分割算法般给予图像灰度只的不连续性或其相似性。不连续性是给予图像灰度的不连续变化分割图像......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。