过滤掉了匹配对。接下来我们要用透视矩阵来进行两幅图像的无缝拼接。无缝拼接算法直接影响最后配准效果。看下面的图,容易发现拼接后的图像里找不到境界线了。那就说明拼接达到了所要求的点上。图图像拼接融合后的效果本次进行了次的随机抽取四对匹配对,并用高斯消元方法求出了透视矩阵。然后次反复上次的随机抽取和计算透视矩阵的过程,同时记录每次求出的矩阵所满足的匹配对数,随后选择满足的匹配对最多的透视矩阵,并且输出在屏幕上,下面图就是最后结果。图最终结果本次所得到的内点透视矩阵所满足的匹配对数的个数为。接下来我们要进行测距。两个通用摄像头的内参数矩阵是已经求出来了,还有两幅图像的算法过滤后得到了正确匹配对集。我们从这匹配对集中选择目标所包含的特征匹配对。我们把它看成主点,也就是说这点代替了目标。虽然模板匹配方法也不错的选择,但是选择目标所包含的特征匹配点作为主要靠擦的点,然后计算距离,这是个很好的方法,这样可以节省跑程序的时间。而且这主点的坐标是已经知道的。所以不需要利用求坐标的函数。图代码看上面图的红色标记的变量里存放着最终正确地匹配对。我们在这个变量里选择目标人物图像所包含的特征点作为我们要考擦得主点。通过编程实现主点的选取和距离的测量。上面这两个是通过上面的摄像头标定后得到的。可以看出两个摄像头的是在定程度上可以看成相同的。通过已选取的特征匹配对确定主点在左右两幅图像中的坐标。由此可以计算,。和是主点在左右两幅图像上从该点到该摄像头的光心轴的距离。上面的这公式是来自于针孔摄像机模型中获得的。为摄像头到目标的距离,为焦距,为两个左右摄像头之间的距离。由此可以进行目标到摄像头的距离检测。为了提高精度可以选取其他点作为主点,这样得出来的距离值互不样,因为摄像机的内外参数及畸变系数影响了最后计算。所以,我们要进行平均运算。这样得出来的正是正确地距离。,为摄像头的个像素的实际距离。本实验所用到的摄像头的横向有效取图像的距离为毫米,除以,。通常情况下和是样的值,这是从工厂上生产出来的时候制定好的。所以。本次编程计算出来的结果为。实际距离为,这样下来,误差有点大,但这误差还是可以接受的。本章小结通过基于的摄像头标定得到了相关的摄像头内外参数。实现了基于的物体测距。这章的研究内容离不开互联网,互联网上有很多好的资料,虽然资料很多,但有些零散,不过,还是通过自己的努力步步自己扛着学来的。开始,研究怎么样用来进行相机标定是个很苦的事情,说真的,没少走弯路,最后,在老师和张伟波学长和张泳学长的帮助下最终完成了这次的相机标定以及测距。所得到的结果虽然没有那么漂亮,但对我来说已经是很大的进步了。通过这次的学习和研究,我学到了怎么样去学知识,怎么样思考问题。最后回头想想那些吃苦通宵翻论文的日子,感觉酸酸的,不过,最后还是很开心的。第五章总结以及未来的展望现在几年来基于的图像处理技术飞速的发展,而且很多国家力图研究先进的技术。很多有名的高效渐渐地要求和鼓励学生用来做相关的研究工作,因为是个对外预定的角点数样时,进行画角点的工作,这工作不是必须要的,这是因为让我们能够正确地做到标定而设置的显示部分代码。首先要对已经读取的标定板图像进行预处理,转换成灰度图,然后用函数来获取每个角点正确的坐标。为了提高标定效果,需要用型变量。最后用自带的函数把提取出来的所有角点画在原图像上面,这样能够用肉眼检查是否成功提取角点。如果上述部分都成功了,就再读取下个图像反复上面的过程。如果所有图像的角点都成功了,我们就把每幅图像的所有角点用数组的方式存放在里。下面用函数来出摄像头的内参数矩阵畸变系数矩阵旋转向量以及平移向量。右摄像头的标定过程跟左摄像头的标定过程完全致,只不过所利用的图像序列是用右图像拍下来的。跟做摄像头标定过程样,我们就读取每个图片提取角点,进行读取每个角点的亚像素级的坐标,然后用数组的方式存储下来,然后用函数来求出相关的矩阵以及向量。下面就是图左摄像头的内参数矩阵以及畸变系数矩阵可见,所求出来的矩阵中左摄像头的图像中心和并不是和。因为上面给所做的都是手动制作的包括摄像头放置,所以,免不了这样的误差。同样,右摄像头标定求出来的内参数矩阵里头的和也是有小的误差。为了避免这样的情况,拍多组标定板利用各种拿法,然后进行标定计算,随后要进行拟合来得到相应摄像头的较准确的内参数矩阵。这样计算的矩阵可以接受的。这样下来的我们得到了两个左右摄像头的内参数矩阵畸变系数矩阵旋转向量以及转移向量。剩下的就是测距,也就是说从目标到摄像头的距离信息的测量。本论文所用到的距离单位是毫米。上面的工作结束后求出来的左右摄像头内参数矩阵如下。因为各种因素导致了最终内参数矩阵的误差,所以,本次实验同样的标定实验进行了五次,当然,每次进行实验之前,各拍了七幅标定板图像。最后总共得到了五组矩阵,通过拟合来求得相关的矩阵。式,正是这样得出来的。看上面的两个摄像头的矩阵可以知道虽然有些小小的误差,但每个摄像头的焦距是差不多的。下面两张图片是测距实验用到的图片。在这儿需要补充说明,因为摄像头对光照的敏感变化给本次测距实验带来了很多麻烦,开始在草原上打开摄像头的时候出现片白色图片,这样,后续的基于算法的特征匹配崩溃了。好在早点发现后换了个相对来说暗的地方进行了本次实验。图从左右两个摄像头拍下来的图像读取了上面的两幅图像后,要进行图像预处理。图预处理后的两幅图像对上面的图像进行特征点提取以及粗匹配。图特征点提取的图像图粗匹配后的匹配结果接下来要用提纯算法,对粗匹配对进行提纯工作。下面就是过滤掉错匹配对的匹配状态图。图提纯后的匹配状态看上面的图就可以知道还是存在些错匹配,但错匹配的比例很少。下面进行透视矩阵参数的估计,我们用随机抽取致性算法对图里的特征匹配对进行参数估计。这次求出来的透视矩阵为上面求出来的透视矩阵所满足的特征点对是最多的,所以我们可以把这次的矩阵视为正确地透视矩阵。下面图里的特征匹配对是满足该透视矩阵的匹配对。图符合矩阵的匹配对容易发现图和图有了些变化,少了些匹配,可以说完全开放创建细节创建铲子利用拉伸特征创建实体特征。利用倒圆工具美化表面。渲染实体,效果如图所示。创建夹子特征创建参照铲子的创建过程,最终效果如图所示。图铲子最终效果图夹子最终效果产品的虚拟装配产品虚拟装配设计对手表各个零部件进行虚拟装配,装配步骤如下用缺省装配形式装配手表主壳体单击装配按钮,把大表盘打开,约束类型选择对齐,使两轴对齐,新建个约束类型为匹配,使配合面对齐。装配小表盘,装配过程参照大表盘装配过程。单击装配按钮,把时针打开,为了实现机构运动仿真,用户定义选择,约束类型选择对齐,使两轴对齐,新建个约束类型为匹配,使配合面对齐。装配所有指针参照时针的装配过程,单击装配按钮,把大表盖打开,约束类型选择对齐,使两轴对齐,新建个约束类型为匹配,使配合面对齐。装配小表盖参照大表盖的装配过程。单击装配按钮,把旋钮打开,约束类型选择对齐,使轴和孔轴线对齐,新建个约束类型为匹配,使配合面对齐。单击装配按钮,把连接轴打开,约束类型选择对齐,使两轴对齐,新建个约束类型为匹配,使配合面对齐。单击装配按钮,把表链打开,约束类型选择对齐,使两轴对齐,新建个约束类型为匹配,使配合面对齐。单击装配按钮,把铲子打开,约束类型选择对齐,使两轴对齐,新建个约束类型为匹配,使配合面对齐。装配完成后,效果得到如图所示。图装配效果图装配爆炸图装配完成后生成装配爆炸图,使装配过程更加直观,如图所示。图装配爆炸图干涉检查干涉检查在产品结构设计中非常重要。运用传统的二维设计方法,检查零件之间是否干涉难度较大,甚至在产品装配调试时才能发现,旦有问题就要返修或改进设计,有时候造成无法更改的,导致设计的失败。运用的模型分析功能对装配体进行干涉检查,可以直观地获得零件间的干涉情况,很方便地找到干涉点的位置并进行修改,保证了设计结果的准确性。从菜单栏中选择分析模型全局干涉命令,打开分解位置对话框接受默认设置,单击计算当前分析以供预览按钮,计算结果为表示没有零件干涉情况。关闭全局干涉对话框。动态仿真与动画录制动态仿真是在真实产品的实物造型制技巧与实例中国铁道出版社,朱海龙,王凤花等基于的圆柱齿轮减速器的三维造型和运动仿真机械管理开发,戴庆辉,耿翔宇在产品造型设计中的应用先进设计,林晓静,张英高级实体特征在机械零件建模中的应用计算机技术,张美艳,舒祖菊在产品造型设计中的应用,孙红,宋奔工业设计与工业产品造型设计,王中厚,梁景兵,高源等基于虚拟样机的摩托赛车发动机动力学性能仿真技术振动与冲击,何蓉芳,华玉文产品造型设计与计算机仿真,龙惠论机械产品的现代设计方法工艺与设计,刘志峰,刘光复面向装配的产品设计方法研究结构设计,刘永翔,阮宝湘产品造型设计的未来发展,张鹏飞,李德法基于的双系杆行星轮机械手的运动分析与仿真烟草加工设备的设计与制造,造之前,利用此软件在计算机的虚拟环境下,设计人员可以对产品整体的外观效果设计风格动态仿真进行虚拟化的演示。从而可以对产品进行合理的运动分析,并提供设计人员进行探讨分析和修改设计总体过滤掉了匹配对。接下来我们要用透视矩阵来进行两幅图像的无缝拼接。无缝拼接算法直接影响最后配准效果。看下面的图,容易发现拼接后的图像里找不到境界线了。那就说明拼接达到了所要求的点上。图图像拼接融合后的效果本次进行了次的随机抽取四对匹配对,并用高斯消元方法求出了透视矩阵。然后次反复上次的随机抽取和计算透视矩阵的过程,同时记录每次求出的矩阵所满足的匹配对数,随后选择满足的匹配对最多的透视矩阵,并且输出在屏幕上,下面图就是最后结果。图最终结果本次所得到的内点透视矩阵所满足的匹配对数的个数为。接下来我们要进行测距。两个通用摄像头的内参数矩阵是已经求出来了,还有两幅图像的算法过滤后得到了正确匹配对集。我们从这匹配对集中选择目标所包含的特征匹配对。我们把它看成主点,也就是说这点代替了目标。虽然模板匹配方法也不错的选择,但是选择目标所包含的特征匹配点作为主要靠擦的点,然后计算距离,这是个很好的方法,这样可以节省跑程序的时间。而且这主点的坐标是已经知道的。所以不需要利用求坐标的函数。图代码看上面图的红色标记的变量里存放着最终正确地匹配对。我们在这个变量里选择目标人物图像所包含的特征点作为我们要考擦得主点。通过编程实现主点的选取和距离的测量。上面这两个是通过上面的摄像头标定后得到的。可以看出两个摄像头的是在定程度上可以看成相同的。通过已选取的特征匹配对确定主点在左右两幅图像中的坐标。由此可以计算,。和是主点在左右两幅图像上从该点到该摄像头的光心轴的距离。上面的这公式是来自于针孔摄像机模型中获得的。为摄像头到目标的距离,为焦距,为两个左右摄像头之间的距离。由此可以进行目标到摄像头的距离检测。为了提高精度可以选取其他点作为主点,这样得出来的距离值互不样,因为摄像机的内外参数及畸变系数影响了最后计算。所以,我们要进行平均运算。这样得出来的正是正确地距离。,为摄像头的个像素的实际距离。本实验所用到的摄像头的横向有效取图像的距离为毫米,除以,。通常情况下和是样的值,这是从工厂上生产出来的时候制定好的。所以。本次编程计算出来的结果为。实际距离为,这样下来,误差有点大,但这误差还是可以接受的。本章小结通过基于的摄像头标定得到了相关的摄像头内外参数。实现了基于的物体测距。这章的研究内容离不开互联网,互联网上有很多好的资料,虽然资料很多,但有些零散,不过,还是通过自己的努力步步自己扛着学来的。开始,研究怎么样用来进行相机标定是个很苦的事情,说真的,没少走弯路,最后,在老师和张伟波学长和张泳学长的帮助下最终完成了这次的相机标定以及测距。所得到的结果虽然没有那么漂亮,但对我来说已经是很大的进步了。通过这次的学习和研究,我学到了怎么样去学知识,怎么样思考问题。最后回头想想那些吃苦通宵翻论文的日子,感觉酸酸的,不过,最后还是很开心的。第五章总结以及未来的展望现在几年来基于的图像处理技术飞速的发展,而且很多国家力图研究先进的技术。很多有名的高效渐渐地要求和鼓励学生用来做相关的研究工作,因为是个对外