算出要加在电机上的电压并输出控制电机的控制信号以及方向信号,完成这功能的器件是,同时它还要完成与无线模块之间的数据传输。传感器信号采集与处理模块为了获取小车的运动状态,需要各种传感器以及信号放大电路。微控制器的模块采集放大后的传感器信号,作为控制系统的输入。无线传输模块研制移动式倒立摆的过程中,需要监测车体运行数据,在上进行分析研究并作为评价算法优劣的依据。在小车的运行过程中,指令的发送也要靠无线传输模块实现。电机驱动电路微处理器通过计算得出来的控制量使用不同占空比的信号驱动功放电路,从而驱动直流减速电机转动。两轮自平衡机器人的结构图二两轮自平衡机器人的实物图三两轮自平衡机器人的实现过程通过分析两轮自平衡机器人的运动规律,采用拉格朗日方程建立机器人的动力学模型,为机器人控制器的设计提供了理论依据。基于传感器互补的原理,选择加速度传感器和陀螺仪测得车体倾斜的角度和角速度,并通过卡尔曼滤波得到较准确的角度和角速度值。通过机器人底部的霍尔传感器测得电机的转速,即机器人运动的速度,并通过积分得到机器人的位移。将前面步得到的角度角速度速度和位移送入,构成倾角环和速度环,即控制算法,计算得到电机驱动的数据,驱动电机。大概以为周期,重复步,不断获取传感器数据,并通过算法得到电机的驱动数据,最终使机器人能够在原地前进后退旋转和刹车的运动过程中保持平衡。四平衡控制器实验结果平衡控制实验两轮自平衡机器人要实现各种运动和速度之前,首先要保持平衡。对于两轮自平衡机器人来说,由于它是个本征不稳定的论文作者王瑜两轮自平衡机器人自适应控制算法的研究哈尔滨工程大学硕士学位论文作者黎田袁泽睿两轮自平衡机器人控制算法的研究中国优秀硕士学位论文全文数据库,王晓宇两轮自平衡机器人多传感器数据融合方法研究中国学术期刊网络出版总库,阮晓刚两轮自平衡机器人动力学建模及其平衡控制中国学术期刊网络出版总库,栗维克两轮自平衡小车大范围稳定的智能控制研究中国优秀硕士学位论文全文数据库,秦剑两轮自平衡车的制作中国学术期刊网络出版总库,作品在何时何地何种机构举行的评审鉴定评比展示等活动中获奖及鉴定结果作品所处阶段实验室阶段中试阶段生产阶段自填技术转让方式作品可展示的形式实物产品模型图纸磁盘现场演示图片录像样品使用说明及该作品的技术特点和优势,提供该作品的适应范围及推广前景的技术性说明及市场分析和经济效益预测与传统轮式移动机器人相比,两轮自平衡机器人主要有如下优点实现了原地回转和任意半径转向,移动轨迹更为灵活易变,能很好地弥补传统多轮布局的缺点。减少占地面积,在场地面积较小或要求灵活运输的场合十分适用。大大地简化了车体结构,可以把机器人做得更小更轻。驱动功率也较小,为电池长时间供电提供可能,为环保轻型车提供了种新的思路。两轮自平衡机器人有着相当广泛的应用前景其典型应用包括通勤车空间探索战场侦查危险品运输排雷灭火智能轮椅医院手术室中医疗器械的运输智能玩具等场合。例如,将两轮小车作为小范围短距离交通工具将更加方便灵活些复杂环境里的工作。作为种新兴的轮式移动机器人,它具有结构简单运动灵活驱动功率小等优点,可以装备成各种应用机器人,在各种复杂环境中完成工作任务。机器人是基于倒立摆模型的复杂非线性系统,是验证各种控制算法的理想平台。作为轮式移动机器人个重要分支,适于在狭小和危险的环境下工作的特点,同时还可以作为种运输和载人工具,有着重要的理论研究意义和广阔的应用前景。两轮自平衡机器人的机械部分包括左右车轮两层板子用于摆放电机及其驱动模块电源和主控电路板等。两个车轮的轴线在同直线上,分别由两个直流减速电机直接驱动小车的重心位于整个车体的中间部分,并且高于车轮轴线采用两轮式的最大优点是可以在小空间范围内灵活运动。在车身下部装有蓄电池左右直流减速电机速度传感器等,其中,速度传感器直流减速电机与两个车轮在同轴线上,速度传感器用于测量左右车轮的运动速度。板子上装有加速度传感器角速度传感器电机驱动模块无线传输模块微控制器等,其中微控制器是整个系统的核心。系统采用的传感器包括加速度传感器角速度传感器速度传感器,通过它们可以测量和运算出小车的状态参数,其中车体倾角车体倾角角速度分别由加速度传感器和角速度传感器直接测量左右车轮的行驶速度由速度传感器测得,进而推算出车体的前进速度以及车体在地面的旋转角速度。将运行状态信息反馈给控制电路,通过计算得到输出脉宽调制信号和方向信号,经过光电隔离,控制驱动电路,经过功率放大后直接驱动直流减速电机,实现对小车的平衡控制。小车行驶过程中,车体向前倾斜个角度当转弯时,电机施加左右车轮不同的力矩,使左右车轮速度出现偏差,从而实现转弯。为了实现控制系统与之间的通信,系统配备了无线传输模块。该模块可以使在米范围内对小车系统进行操作,同时可以通过系统,需要设计控制器使其能够在平衡的基础上实现各种期望的运动和速度。所以平衡是两轮自平衡机器人控制的基础。将通过两轮自平衡机器人在静止时的动态平衡实验验证控制器在平衡控制方面的性能。实验结果如图抗干扰实验为了验证控制器控制机器人对外部扰动的抑制能力,进行了机器人的抗干扰性实验。实验结果如图速度跟踪实验两轮自平衡机器人在保持平衡的基础上,最终需要实现期望的运动,所以,在平衡与抗干扰性实验的基础上,还进行了机器人速度跟踪实验。实验从上位机给控制器输入个期望的速度,通过传感器测得机器人的前进速度,画出速度变化曲线。实验结果如图以上是控制器控制机器人平衡抗干扰和速度跟踪的实验结果,从图中可以看出,控制器在拐角处的调整时间很短,这点从机器人,轴的速度曲线也可以看出,控制器在速度变化时的调整时间短,超调小。从以上分析可知,控制器对于速度的变化调整较快,超调小,实现的矩形轨迹也较好。线模块将系统的各种状态信息发送到机,以供实验分析。整个系统又相当于个无线测试平台。系统硬件设计主要包括以下几个模块电源模块系统需要的电压分别有等,分别给运放传感器单片机电机驱动等供电。微控制器模块两轮自平衡机器人在行进过程中,通过模块实时采样传感器信号,计环保数值,并转化为频率值,当频率较大时,计数值较小,产生的误差大,所以利用多个周期的计数值,最后再取均值,这样得到的频率值就比较精确,本设计采用个周期的计数值。中断流程图如图所示。中断流程图中断程序中断计数值计数次获得个周期内的时钟个数定时清零中断程序中断方式选择溢出中断计数加中断流程图如图所示。中断流程图显示模块首先根据液晶的时序图写出液晶驱动函数,并调用驱动函数完成在指定位置处显示字符的功能函数,这样通过定时刷新液晶屏就可安装使用,且具备高达波特的串行通信速度•支持所有采用或封装的和器件•分别连接至绿光和红光的两个通用数字引脚可提供视觉反馈•两个按钮可实现用户反馈和芯片复位•器件引脚可通过插座引出,既可以方便的用于调试,也可用来添加定制的扩展板•高质量的引脚插座,可轻松简便地插入目标器件或将其移除各单元电路介绍介绍单片机具有丰富的内部资源,优化的架构,结合五种低功耗模式,实现了便携式测量应用中电池寿命的延长。图是的内部结构模块,图的内部结构图引脚如图所示。图引脚图被测信号经信号调理电路整形后输出到单片机的口管脚,利用单片机的定时中断和中断实现对输入信号的频率测量。电源部分电路介绍电源电路图如图所示。图电源电路图电源部分由外部电路提供,经过稳压芯片将电压转化为,给单片机提供电源,使其正常工作。信号调理电路介绍信号调理部分主要采用迟滞比较,将输入信号波形转化为脉冲信号,另外波形变换和波形整形电路实现把正弦波样的正负交替的信号波形变换成可被单片机接收的信号,以便单片机对其进行频率测量,最后将测得的数据通过液晶显示。迟滞比较器是个具有迟滞回环传输特性的比较器。在反相输入单门限电压比较器的基础上引入正反馈网络,就组成了具有双门限值的反相输入迟滞比较器。由于反馈的作用这种比较器的门限电压是随输出电压的变化而变化的。它的灵敏度低些,但抗干扰能力却大大提高。反相实现对液晶的控制,来显示测得的频率值,液晶的控制管脚与单片机的连接如下图所示。图液晶控制管脚连接图系统原理图及元器件清单系统整体设计原理图如下图所示。产生电源信号调理电路转化为方波将转化成图系统设计原理图原理图所对应的元器件清单如表所示。表元器件清单板设计整个尺寸,采用双面设计,表面覆铜与连接。顶层设计如下图所示。滞比较器的电路组成如图所示,如果把和位置互换,就可以构成同相输入迟滞比较器。图反相迟滞比较器电路组成迟滞比较器又可理解为加正反馈的单限比较器。对于单限比较器,如果输入信号在门限值附近有微小的干扰,则输出电压就会产生相应的抖动起伏,而在此电路中引入正反馈可以克服这缺点。整个信号调理电路原理图如图所示。图信号,,,,基本用时粗铣精铣孔下平面粗铣的切削工时被切削层长度由毛坯尺寸可知,刀具切入长度刀具切出长度取走刀次数为机动时间铣引脚的对应关系,连接好之后,仔细检查,防止出错。系统连接实物照片如图所示。系统连接实物照片另外,安装调试过程中应注意以下事项焊接算出要加在电机上的电压并输出控制电机的控制信号以及方向信号,完成这功能的器件是,同时它还要完成与无线模块之间的数据传输。传感器信号采集与处理模块为了获取小车的运动状态,需要各种传感器以及信号放大电路。微控制器的模块采集放大后的传感器信号,作为控制系统的输入。无线传输模块研制移动式倒立摆的过程中,需要监测车体运行数据,在上进行分析研究并作为评价算法优劣的依据。在小车的运行过程中,指令的发送也要靠无线传输模块实现。电机驱动电路微处理器通过计算得出来的控制量使用不同占空比的信号驱动功放电路,从而驱动直流减速电机转动。两轮自平衡机器人的结构图二两轮自平衡机器人的实物图三两轮自平衡机器人的实现过程通过分析两轮自平衡机器人的运动规律,采用拉格朗日方程建立机器人的动力学模型,为机器人控制器的设计提供了理论依据。基于传感器互补的原理,选择加速度传感器和陀螺仪测得车体倾斜的角度和角速度,并通过卡尔曼滤波得到较准确的角度和角速度值。通过机器人底部的霍尔传感器测得电机的转速,即机器人运动的速度,并通过积分得到机器人的位移。将前面步得到的角度角速度速度和位移送入,构成倾角环和速度环,即控制算法,计算得到电机驱动的数据,驱动电机。大概以为周期,重复步,不断获取传感器数据,并通过算法得到电机的驱动数据,最终使机器人能够在原地前进后退旋转和刹车的运动过程中保持平衡。四平衡控制器实验结果平衡控制实验两轮自平衡机器人要实现各种运动和速度之前,首先要保持平衡。对于两轮自平衡机器人来说,由于它是个本征不稳定的论文作者王瑜两轮自平衡机器人自适应控制算法的研究哈尔滨工程大学硕士学位论文作者黎田袁泽睿两轮自平衡机器人控制算法的研究中国优秀硕士学位论文全文数据库,王晓宇两轮自平衡机器人多传感器数据融合方法研究中国学术期刊网络出版总库,阮晓刚两轮自平衡机器人动力学建模及其平衡控制中国学术期刊网络出版总库,栗维克两轮自平衡小车大范围稳定的智能控制研究中国优秀硕士学位论文全文数据库,秦剑两轮自平衡车的制作中国学术期刊网络出版总库,作品在何时何地何种机构举行的评审鉴定评比展示等活动中获奖及鉴定结果作品所处阶段实验室阶段中试阶段生产阶段自填技术转让方式作品可展示的形式实物产品模型图纸磁盘现场演示图片录像样品使用说明及该作品的技术特点和优势,提供该作品的适应范围及推广前景的技术性说明及市场分析和经济效益预测与传统轮式移动机器人相比,两轮自平衡机器人主要有如下优点实现了原地回转和任意半径转向,移动轨迹更为灵活易变,能很好地弥补传统多轮布局的缺点。减少占地面积,在场地面积较小或要求灵活运输的场合十分适用。大大地简化了车体结构,可以把机器人做得更小更轻。驱动功率也较小,为电池长时间供电提供可能,为环保轻型车提供了种新的思路。两轮自平衡机器人有着相当广泛的应用前景其典型应用包括通勤车空间探索战场侦查危险品运输排雷灭火智能轮椅医院手术室中医疗器械的运输智能玩具等场合。例如,将两轮小车作为小范围短距离交通工具将更加方便灵活
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 18 页
第 2 页 / 共 18 页
第 3 页 / 共 18 页
第 4 页 / 共 18 页
第 5 页 / 共 18 页
第 6 页 / 共 18 页
第 7 页 / 共 18 页
第 8 页 / 共 18 页
第 9 页 / 共 18 页
第 10 页 / 共 18 页
第 11 页 / 共 18 页
第 12 页 / 共 18 页
第 13 页 / 共 18 页
第 14 页 / 共 18 页
第 15 页 / 共 18 页
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。