1、“.....这样会导致解线性方程组时出现奇异矩阵,导致解的结果不可靠,这种情况随着样本数的增加而更加明显。因此,这种方法适用于那些给定样本数据具有代表性的问题。而对于输入样本数据具有定冗余性的问题来说,这种方法就不太适用。为此,设计者可以考虑在样本密集的地方中心点可以适当多些,样本稀疏的地方中心点可以少些进步的方法是通过自组织的方法自动找到不同区域样本的代表向量。在这种方法中,旦中心点选定,就而已进步确定基函数的扩展系数。例如高斯函数的宽度可以取式中,是所选数据中心之间的最大距离,是数据中心的数目。自组织学习选取中心及网络设计中心通过自组织学习进行聚类,选取聚类中心作为中心,而输出层的权值可以通过解线性方程组,也可以通过有监督的学习规则计算。自组织学习的目的是使的中心位于样本空间的代表性区域。年,和提出种由两个阶段组成的混合学习过程的思路。第阶段为自组织学习阶段,目的是为隐藏层径向基函数的中心估计个合适的位置,可采用聚类算法确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展系数第二阶段为监督学习阶段,用有监督学习算法,如梯度法训练网络得出输出层的权值......”。
2、“.....但是用自适应迭代的方法更理想。对于自组织学习过程,我们需要个聚类的算法将所给的数据点剖几个不同的部分,每部分中的数据都尽量有相同性质。种这样的算法为均值聚类算法,他将径向基函数的中心放在输入空间中重要数据点所在的区域上。那么,数据中心的均值聚类算法的步骤如下初始化。选择个互不相同向量作为初始聚类中心,选择方法可以是随机选取。计算各样本点与聚类中心点的距离。相似匹配。将全部样本划分为个子集,每个子集构成个以聚类中心为典型代表的聚类域。更新各类的聚类中心。对各聚类域中的样本取均值表示聚类中心。令,转到第步,重复上述过程,对于均值聚类法,直到时停止训练。各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展系数。,则扩展系数取,为重叠系数。混合学习过程的第二步是用有监督学习算法得到输出层的权值,常采用算法,下节中有所说明。有监督学习选取中心及网络设计关于数据中心的监督学习算法,最般的情况是对输出层各权向量赋小随机数并进行归化处理隐节点函数的中心,扩展系数和输出层权值均采用监督学习算法进行训练,所有参数都经历个误差修正学习过程。以单输出网络为例,采用梯度下降算法......”。
3、“.....为训练样本数,为输入第个样本时的误差信号。定义为,式中输出函数忽略了阈值。为使目标函数最小化,各参数修正量应与其负梯度成正比,经推到得计算式为隐单元中心调整函数宽度扩展系数调整输出单元的权值更新上述目标函数是所有训练样本引起的误差的总和,导出的参数修正公式是种批处理式调整。其他方法试验法令扩展参数以增量在定范围,内递增变化,在学习样本中,采用的数据作为训练样本数据,对网络进行训练。然后用训练出的网络对另外为检验样本数据进行预测,最后得出预测值与样本之间的误差矩阵,用式作为评价网络性能的指标,将能够令误差最小的扩展参数的值选出,并用在最后的网络预测中,而式可以作为网络训练的终止准则。可以看出,扩展参数的确定过程体现了对网络性能的验证过程。文中由于将预测的数据均标准化至,区间内,输入向量之间距离的最大及最小值分别为和,因此选择扩展参数由,并以步长为进行变化。采用进化优选算法选择中心把网络的结构设计问题归结为寻找最优选择路径问题,然后采用进化策略进行寻找,从而得到最优的数据中心及扩展系数。例如基于免疫算法的网络优化基于遗传算法的网络优化。下面以遗传算法为例介绍。遗传算法......”。
4、“.....优胜劣汰遗传机制演化而来的种全局自适应优化概率搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖交叉和基因突变现象,在每次迭代中都保留组候选解,并按照些指标从解群中选取较优的个体,利用遗传算子选择交叉和变异对这些个体进行组合,产生新代的候选解群,重复此过程,直到选出满足些收敛指标为止。用遗传算法优化平滑参数的步骤为定义规模为的初始种群根据缺交叉预测的方法,分别计算每个个体的适应度根据得到的适应度,保留若干个适应度大的优良个体④执行选择交换变异操作,生成新代种群判断是否满足终止条件,若是,求出最优解若否,返回至步骤。终止条件可以设置成连续进化几代后,最优值仍然保持不变,或已经达到最大进化代数。最终,经过遗传算法优化,得到最优值。图遗传算法的运算流程基于神经网络的风功率预测建模方法问题描述我国的风电开发已具有相当规模,为保证风电并网后电网安全可靠运行,电网企业作为风电的实际调度主体,熟悉大范围内风电运行特性,应充分发挥自身优势,参与风电功率预测系统的开发建设工作,不断完善风电功率预测系统的功能,并且根据我国实际特点......”。
5、“.....风电场功率预测是指风电场经营企业根据气象条件统计规律等技术和手段,提前对定运行时间内风电场发电有功功率进行分析预报,向电网调度机构提交预报结果,提高风电场与电力系统协调运行的能力。根据电力调度部门安排运行方式的不同需求,风电功率预测分为日前预测和实时预测。日前预测是预测明日小时个时点每分钟个时点的风功率数值。实时预测是滚动地预测每个时点未来小时内的个时点每分钟个时点的风功率数值。按预测时间的不同又可分为长期预测中期预测短期预测超短期预测。其中超短期预测是提前几个小时或几十分钟预测。本例预测是根据从风电场获得的风电机组输出功率数据,运用神经网络对风功率进行超短期实时预测并检验预测结果。数据预处理合理性检验风电场输出功率值应均为正值,且不能大于总机组安装容量,故数值范围为单位为。在此数值要求情况下,对风电场输出功率数据进行适当修正。数据标准化在保证数据信息损失小的前提下,为减少网络的训练时间,利用最大最小标准化为数据进行归化,并对数值保留小数点后四位。归化计算公式为式中,和分别为校正风功率数据中的最大值和最小值,该公式将数据归化到,之间......”。
6、“.....输出数据的位为脚的状态位。次通信只有在发出请求时产生,当主通信采用位模式时,可以进行次通信请求当主通信采用位模式时,则必须由脚输入信号来产生次通信请求。信号通道模拟输入多路模拟输入可供选择差分输入与辅助差分输入,本模块为单端输入由脚输入。数字输出输出的数字数据和寄存器数据,当为低电平时,在的上升沿开始输出数据未被激活时处于高阻态。模拟输入信号经放大后加入到,将采样时刻的信号值按二进制补码的形式按位字输出,位或位字,在的每个上升沿送出位,经过个周期,每次主通信区间送出个字,在期间里从串口移出,主通信时序图如图生高电压进行编程和擦除操作。只需向它的命令寄存器写入标准的微处理器指令,具体编程擦除操作由内部嵌入的算法实现,并且可以通过查询特定的引脚或数据线监控操作是否完成。可以对任扇区进行读写或擦除操作,而不影响其他部分的数据。与的连接图如下图所示图与的连接图是个低功耗闪存,工作在至电压下,存储容量为,其中,至是外部地址引脚,至为条数据线,的地址线和数据线与的地址线和数据线直连。为片选控制引脚低有效,为输出控制引脚低有效,为写入控制引脚低有效,这三个引脚由地址译码逻辑产生......”。
7、“.....针对片外存储器同速度不匹配的问题,提供了两种解决方案。其是在系统硬件复位时,根据引脚的电平状态确定的初始频率。为了在系统硬件复位时能正确地从中读入程序,的初始频率都设得比较低。如本文用到的访问速度为,的初始频率可设为。另种方法是系统启动以后,通过设置软件可编程等待状态寄存器控制,不需要任何外部硬件。的软件可编程等待状态发生器最多可将外部总线周期延长到个机器周期。当以速度工作时,为保证正常读写,总线周期至少要延长到个机器周期以上。语音输出模块设计本文通过麦克风对语音进行采集,对采集到的语音进行滤波,放大,再将处理过的信号送入,通过将语音送到功放,最后经过耳机送出。本次放大电路是用芯片来设计的。的特性静态功耗低,约为,可用于电池供电。工作电压范围宽,或。外围元件少。电压增益可调,。低失真度。经带输出的声音回放信号,其幅度为,足以用耳机来收听,可不接任何放大器。但考虑到实际中经常会用到喇叭外放,故在本系统中增加外放功能。本文设计的电路增益为,连续可调,最大大不失真输出功率为。输出端接串联电路,以校正喇叭的频率特性,防止高频自激。脚接去耦电容,以消除低频自激......”。
8、“.....本次设计的语音输出接口电路如下图所示图语音输出接口电路图本章小结本章对系统硬件的各个模块做了介绍,系统硬件包括模块前置放大模块功放模块模块,同时还对各个模块的硬件连接做了介绍。参考文献江涛,朱光喜,李顶根基于的音频信号采集与处理系统电子技术应用王海平,刘琚基于的实时语音采集与处理系统山东大学学报工学版刘琚基于的实时语音采集与处理系统山东大学学报工学版乔建华,张井岗,李临生基于的语音信号采集系统的设计太原科技大学学报邓彦松,向伟,王丹基行,这样会导致解线性方程组时出现奇异矩阵,导致解的结果不可靠,这种情况随着样本数的增加而更加明显。因此,这种方法适用于那些给定样本数据具有代表性的问题。而对于输入样本数据具有定冗余性的问题来说,这种方法就不太适用。为此,设计者可以考虑在样本密集的地方中心点可以适当多些,样本稀疏的地方中心点可以少些进步的方法是通过自组织的方法自动找到不同区域样本的代表向量。在这种方法中,旦中心点选定,就而已进步确定基函数的扩展系数。例如高斯函数的宽度可以取式中,是所选数据中心之间的最大距离,是数据中心的数目......”。
9、“.....选取聚类中心作为中心,而输出层的权值可以通过解线性方程组,也可以通过有监督的学习规则计算。自组织学习的目的是使的中心位于样本空间的代表性区域。年,和提出种由两个阶段组成的混合学习过程的思路。第阶段为自组织学习阶段,目的是为隐藏层径向基函数的中心估计个合适的位置,可采用聚类算法确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展系数第二阶段为监督学习阶段,用有监督学习算法,如梯度法训练网络得出输出层的权值。虽然可以用批处理来执行上述两种学习阶段,但是用自适应迭代的方法更理想。对于自组织学习过程,我们需要个聚类的算法将所给的数据点剖几个不同的部分,每部分中的数据都尽量有相同性质。种这样的算法为均值聚类算法,他将径向基函数的中心放在输入空间中重要数据点所在的区域上。那么,数据中心的均值聚类算法的步骤如下初始化。选择个互不相同向量作为初始聚类中心,选择方法可以是随机选取。计算各样本点与聚类中心点的距离。相似匹配。将全部样本划分为个子集,每个子集构成个以聚类中心为典型代表的聚类域。更新各类的聚类中心......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。