1、“.....将能够令误差最小的扩展参数的值选出,并用在最后的网络预测中,而式可以作为网络训练的终止准则。可以看出,扩展参数的确定过程体现了对网络性能的验证过程。文中由于将预测的数据均标准化至,区间内,输入向量之间距离的最大及最小值分别为和,因此选择扩展参数由,并以步长为进行变化。采用进化优选算法选择中心把网络的结构设计问题归结为寻找最优选择路径问题,然后采用进化策略进行寻找,从而得到最优的数据中心及扩展系数。例如基于免疫算法的网络优化基于遗传算法的网络优化。下面以遗传算法为例介绍。遗传算法,是类借鉴生物界的进化规则适者生存,优胜劣汰遗传机制演化而来的种全局自适应优化概率搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖交叉和基因突变现象,在每次迭代中都保留组候选解,并按照些指标从解群中选取较优的个体,利用遗传算子选择交叉和变异对这些个体进行组合,产生新代的候选解群,重复此过程,直到选出满足些收敛指标为止。用遗传算法优化平滑参数的步骤为定义规模为的初始种群根据缺交叉预测的方法,分别计算每个个体的适应度根据得到的适应度,保留若干个适应度大的优良个体④执行选择交换变异操作......”。
2、“.....若是,求出最优解若否,返回至步骤。终止条件可以设置成连续进化几代后,最优值仍然保持不变,或已经达到最大进化代数。最终,经过遗传算法优化,得到最优值。图遗传算法的运算流程基于神经网络的风功率预测建模方法问题描述我国的风电开发已具有相当规模,为保证风电并网后电网安全可靠运行,电网企业作为风电的实际调度主体,熟悉大范围内风电运行特性,应充分发挥自身优势,参与风电功率预测系统的开发建设工作,不断完善风电功率预测系统的功能,并且根据我国实际特点,电网企业能够有条件制定适应我国风电开发特点的风电功率预测执行规范。风电场功率预测是指风电场经营企业根据气象条件统计规律等技术和手段,提前对定运行时间内风电场发电有功功率进行分析预报,向电网调度机构提交预报结果,提高风电场与电力系统协调运行的能力。根据电力调度部门安排运行方式的不同需求,风电功率预测分为日前预测和实时预测。日前预测是预测明日小时个时点每分钟个时点的风功率数值。实时预测是滚动地预测每个时点未来小时内的个时点每分钟个时点的风功率数值。按预测时间的不同又可分为长期预测中期预测短期预测超短期预测......”。
3、“.....本例预测是根据从风电场获得的风电机组输出功率数据,运用神经网络对风功率进行超短期实时预测并检验预测结果。数据预处理合理性检验风电场输出功率值应均为正值,且不能大于总机组安装容量,故数值范围为单位为。在此数值要求情况下,对风电场输出功率数据进行适当修正。数据标准化在保证数据信息损失小的前提下,为减少网络的训练时间,利用最大最小标准化为数据进行归化,并对数值保留小数点后四位。归化计算公式为式中,和分别为校正风功率数据中的最大值和最小值,该公式将数据归化到,之间。转化矩阵形式对时间序列数据进行,这样会导致解线性方程组时出现奇异矩阵,导致解的结果不可靠,这种情况随着样本数的增加而更加明显。因此,这种方法适用于那些给定样本数据具有代表性的问题。而对于输入样本数据具有定冗余性的问题来说,这种方法就不太适用。为此,设计者可以考虑在样本密集的地方中心点可以适当多些,样本稀疏的地方中心点可以少些进步的方法是通过自组织的方法自动找到不同区域样本的代表向量。在这种方法中,旦中心点选定,就而已进步确定基函数的扩展系数。例如高斯函数的宽度可以取式中,是所选数据中心之间的最大距离,是数据中心的数目......”。
4、“.....选取聚类中心作为中心,而输出层的权值可以通过解线性方程组,也可以通过有监督的学习规则计算。自组织学习的目的是使的中心位于样本空间的代表性区域。年,和提出种由两个阶段组成的混合学习过程的思路。第阶段为自组织学习阶段,目的是为隐藏层径向基函数的中心估计个合适的位置,可采用聚类算法确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展系数第二阶段为监督学习阶段,用有监督学习算法,如梯度法训练网络得出输出层的权值。虽然可以用批处理来执行上述两种学习阶段,但是用自适应迭代的方法更理想。对于自组织学习过程,我们需要个聚类的算法将所给的数据点剖几个不同的部分,每部分中的数据都尽量有相同性质。种这样的算法为均值聚类算法,他将径向基函数的中心放在输入空间中重要数据点所在的区域上。那么,数据中心的均值聚类算法的步骤如下初始化。选择个互不相同向量作为初始聚类中心,选择方法可以是随机选取。计算各样本点与聚类中心点的距离。相似匹配。将全部样本划分为个子集,每个子集构成个以聚类中心为典型代表的聚类域。更新各类的聚类中心......”。
5、“.....令,转到第步,重复上述过程,对于均值聚类法,直到时停止训练。各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展系数。,则扩展系数取,为重叠系数。混合学习过程的第二步是用有监督学习算法得到输出层的权值,常采用算法,下节中有所说明。有监督学习选取中心及网络设计关于数据中心的监督学习算法,最般的情况是对输出层各权向量赋小随机数并进行归化处理隐节点函数的中心,扩展系数和输出层权值均采用监督学习算法进行训练,所有参数都经历个误差修正学习过程。以单输出网络为例,采用梯度下降算法。定义目标函数为式中,为训练样本数,为输入第个样本时的误差信号。定义为,式中输出函数忽略了阈值。为使目标函数最小化,各参数修正量应与其负梯度成正比,经推到得计算式为隐单元中心调整函数宽度扩展系数调整输出单元的权值更新上述目标函数是所有训练样本引起的误差的总和,导出的参数修正公式是种批处理式调整。其他方法试验法令扩展参数以增量在定范围,内递增变化,在学习样本中,采用的数据作为训练样本数据,对网络进行训练。然后用训练出的网络对另外为检验样本数据进行预测,最后得出预测值与样本之间的误差矩阵......”。
6、“..... 项目选址处总面积约亩,扣除不可用于建厂的滩涂陡峭山 地部分,实际可用面积约亩。拟建厂用地的部分为荒山,部 分为平地比较,对拟选厂址的地形地貌水 源及供水供电交通等建厂条件进行了实地考察及踏勘,通过对比, 确定本工程建于黔江区冯家镇照耀村。 照耀村距离黔江主城区约公里,距离冯家镇约公里,周边 为山地丘国家政策逐步淘汰 对象出自节约能源和保护资源的目的,所以,投资新建的黔江工 业硅项目具有起点高节能环保好,符合国家产业政策等优势。 厂址及建设条件 厂址位置 经对该工程厂址进行了多方案有销售市场非常成熟,该项目建成投产后,可以共享销售平台 同时可通过现有的交易市场拓展国内国际两个市场。目前我国工业硅产能分散到近家企业,绝大多数厂家采 用的小电炉生产,而这些小电炉是产量 从年以来达到万吨以上,超过世界总产量的至 年,国内工业硅总产量将超过万吨,消费总量将超过万吨, 近半的产品用于出口。 市场营销条件成熟。项目业主现在秀山拥有万吨工业硅产 能,现信息产业对化学级工业硅的消耗需求以及优质铝材用硅增长迅 猛,增幅稳定保持在以上......”。
7、“..... 中国是世界上最大的工业硅生产出口国,也是需求大国,年世界对工业 硅平均需求总量为每年万吨,平均供给总量为万吨,总量供 需状况基本平衡,但消费结构发生较大变化,可保证产品质量,实现公司 经济利益和社会效益同步协调发展。 建设地点概况 重庆市黔江区位于重庆市的东南边缘,地处武陵山腹地,东临湖 北省的咸丰县,西界彭水县,南连酉阳县,北接湖北利川市,是渝 核准通过,归档资料。 未经允许,请勿外传,鄂湘黔四省市的结合部,素有渝鄂咽喉之称,是重庆市主要 的少数民族聚居地之,地理座标在东经度分至度分, 北纬度分至干法旋窑水泥生产线,对已建立窑水泥 在符合产业政策条件下鼓励 鄂式破碎机 锤式破碎机 烘干机 生料磨 生料磨 熟料卸料 鄂式细破机 水泥磨 水泥磨 机立窑 散源 合计 该公司年生产水泥量量为,目 前......”。
8、“.....其污染 物排放状况列于表。 从表可以看出,粉烟尘每小时排放量为, 全天为。其吨产品排放粉烟尘 料 库 水 泥 库 包装房 办公楼球 场 材料库房机修房 天 桂 路 主 干 道 厂区主干道 华峰水泥厂 生等。无组织性排放的散源较多,如皮带运输,提升,物料堆棚等。 矿山鄂破矿山锤破皮带走廊 烘干机 生料磨 生料磨 立 窑 熟 料 卸 料 熟料破碎 水泥磨 水指标,将能够令误差最小的扩展参数的值选出,并用在最后的网络预测中,而式可以作为网络训练的终止准则。可以看出,扩展参数的确定过程体现了对网络性能的验证过程。文中由于将预测的数据均标准化至,区间内,输入向量之间距离的最大及最小值分别为和,因此选择扩展参数由,并以步长为进行变化。采用进化优选算法选择中心把网络的结构设计问题归结为寻找最优选择路径问题,然后采用进化策略进行寻找,从而得到最优的数据中心及扩展系数。例如基于免疫算法的网络优化基于遗传算法的网络优化。下面以遗传算法为例介绍。遗传算法......”。
9、“.....优胜劣汰遗传机制演化而来的种全局自适应优化概率搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖交叉和基因突变现象,在每次迭代中都保留组候选解,并按照些指标从解群中选取较优的个体,利用遗传算子选择交叉和变异对这些个体进行组合,产生新代的候选解群,重复此过程,直到选出满足些收敛指标为止。用遗传算法优化平滑参数的步骤为定义规模为的初始种群根据缺交叉预测的方法,分别计算每个个体的适应度根据得到的适应度,保留若干个适应度大的优良个体④执行选择交换变异操作,生成新代种群判断是否满足终止条件,若是,求出最优解若否,返回至步骤。终止条件可以设置成连续进化几代后,最优值仍然保持不变,或已经达到最大进化代数。最终,经过遗传算法优化,得到最优值。图遗传算法的运算流程基于神经网络的风功率预测建模方法问题描述我国的风电开发已具有相当规模,为保证风电并网后电网安全可靠运行,电网企业作为风电的实际调度主体,熟悉大范围内风电运行特性,应充分发挥自身优势,参与风电功率预测系统的开发建设工作,不断完善风电功率预测系统的功能,并且根据我国实际特点......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。