行,这样会导致解线性方程组时出现奇异矩阵,导致解的结果不可靠,这种情况随着样本数的增加而更加明显。因此,这种方法适用于那些给定样本数据具有代表性的问题。而对于输入样本数据具有定冗余性的问题来说,这种方法就不太适用。为此,设计者可以考虑在样本密集的地方中心点可以适当多些,样本稀疏的地方中心点可以少些进步的方法是通过自组织的方法自动找到不同区域样本的代表向量。在这种方法中,旦中心点选定,就而已进步确定基函数的扩展系数。例如高斯函数的宽度可以取式中,是所选数据中心之间的最大距离,是数据中心的数目。自组织学习选取中心及网络设计中心通过自组织学习进行聚类,选取聚类中心作为中心,而输出层的权值可以通过解线性方程组,也可以通过有监督的学习规则计算。自组织学习的目的是使的中心位于样本空间的代表性区域。年,和提出种由两个阶段组成的混合学习过程的思路。第阶段为自组织学习阶段,目的是为隐藏层径向基函数的中心估计个合适的位置,可采用聚类算法确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展系数第二阶段为监督学习阶段,用有监督学习算法,如梯度法训练网络得出输出层的权值。虽然可以用批处理来执行上述两种学习阶段,但是用自适应迭代的方法更理想。对于自组织学习过程,我们需要个聚类的算法将所给的数据点剖几个不同的部分,每部分中的数据都尽量有相同性质。种这样的算法为均值聚类算法,他将径向基函数的中心放在输入空间中重要数据点所在的区域上。那么,数据中心的均值聚类算法的步骤如下初始化。选择个互不相同向量作为初始聚类中心,选择方法可以是随机选取。计算各样本点与聚类中心点的距离。相似匹配。将全部样本划分为个子集,每个子集构成个以聚类中心为典型代表的聚类域。更新各类的聚类中心。对各聚类域中的样本取均值表示聚类中心。令,转到第步,重复上述过程,对于均值聚类法,直到时停止训练。各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展系数。,则扩展系数取,为重叠系数。混合学习过程的第二步是用有监督学习算法得到输出层的权值,常采用算法,下节中有所说明。有监督学习选取中心及网络设计关于数据中心的监督学习算法,最般的情况是对输出层各权向量赋小随机数并进行归化处理隐节点函数的中心,扩展系数和输出层权值均采用监督学习算法进行训练,所有参数都经历个误差修正学习过程。以单输出网络为例,采用梯度下降算法。定义目标函数为式中,为训练样本数,为输入第个样本时的误差信号。定义为,式中输出函数忽略了阈值。为使目标函数最小化,各参数修正量应与其负梯度成正比,经推到得计算式为隐单元中心调整函数宽度扩展系数调整输出单元的权值更新上述目标函数是所有训练样本引起的误差的总和,导出的参数修正公式是种批处理式调整。其他方法试验法令扩展参数以增量在定范围,内递增变化,在学习样本中,采用的数据作为训练样本数据,对网络进行训练。然后用训练出的网络对另外为检验样本数据进行预测,最后得出预测值与样本之间的误差矩阵,用式作为评价网络性能的指标,将能够令误差最小的扩展参数的值选出,并用在最后的网络预测中,而式可以作为网络训练的终止准则。可以看出,扩展参数的确定过程体现了对网络性能的验证过程。文中由于将预测的数据均标准化至,区间内,输入向量之间距离的最大及最小值分别为和,因此选择扩展参数由,并以步长为进行变化。采用进化优选算法选择中心把网络的结构设计问题归结为寻找最优选择路径问题,然后采用进化策略进行寻找,从而得到最优的数据中心及扩展系数。例如基于免疫算法的网络优化基于遗传算法的网络优化。下面以遗传算法为例介绍。遗传算法,是类借鉴生物界的进化规则适者生存,优胜劣汰遗传机制演化而来的种全局自适应优化概率搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖交叉和基因突变现象,在每次迭代中都保留组候选解,并按照些指标从解群中选取较优的个体,利用遗传算子选择交叉和变异对这些个体进行组合,产生新代的候选解群,重复此过程,直到选出满足些收敛指标为止。用遗传算法优化平滑参数的步骤为定义规模为的初始种群根据缺交叉预测的方法,分别计算每个个体的适应度根据得到的适应度,保留若干个适应度大的优良个体④执行选择交换变异操作,生成新代种群判断是否满足终止条件,若是,求出最优解若否,返回至步骤。终止条件可以设置成连续进化几代后,最优值仍然保持不变,或已经达到最大进化代数。最终,经过遗传算法优化,得到最优值。图遗传算法的运算流程基于神经网络的风功率预测建模方法问题描述我国的风电开发已具有相当规模,为保证风电并网后电网安全可靠运行,电网企业作为风电的实际调度主体,熟悉大范围内风电运行特性,应充分发挥自身优势,参与风电功率预测系统的开发建设工作,不断完善风电功率预测系统的功能,并且根据我国实际特点,电网企业能够有条件制定适应我国风电开发特点的风电功率预测执行规范。风电场功率预测是指风电场经营企业根据气象条件统计规律等技术和手段,提前对定运行时间内风电场发电有功功率进行分析预报,向电网调度机构提交预报结果,提高风电场与电力系统协调运行的能力。根据电力调度部门安排运行方式的不同需求,风电功率预测分为日前预测和实时预测。日前预测是预测明日小时个时点每分钟个时点的风功率数值。实时预测是滚动地预测每个时点未来小时内的个时点每分钟个时点的风功率数值。按预测时间的不同又可分为长期预测中期预测短期预测超短期预测。其中超短期预测是提前几个小时或几十分钟预测。本例预测是根据从风电场获得的风电机组输出功率数据,运用神经网络对风功率进行超短期实时预测并检验预测结果。数据预处理合理性检验风电场输出功率值应均为正值,且不能大于总机组安装容量,故数值范围为单位为。在此数值要求情况下,对风电场输出功率数据进行适当修正。数据标准化在保证数据信息损失小的前提下,为减少网络的训练时间,利用最大最小标准化为数据进行归化,并对数值保留小数点后四位。归化计算公式为式中,和分别为校正风功率数据中的最大值和最小值,该公式将数据归化到,之间。转化矩阵形式对时间序列数据进截断下图所示为电容转储式功率变换器主电路。当主开关导通时,电源对相绕组供电当主开关断开时,相绕组电流经二极管续流,向电能转储电容充电,再适时控制开关的通断,使向转移能量,实现两次馈电。图电容转储型主电路电容分压型图所示的是采用分压型直流电源的功率变换电路结构。由于两个电容的分压,每相只得到电源电压的半,每相绕组的通路上只有个开关管和个续流二极管,单相运行导通时,相绕组从吸收电能,关断后相绕组储存的磁能转化为电能通过向充电紧接着值,取剩下的个数的平均值作为速度值计算出开关磁阻电动机当前的转速来控制各相的开通和关断,实现相间换流。电流斩波运行子程序当依据定时器周期中断的发生,给提供相应的相开通和关断信号,即实现换相。从而让电机稳定运行。测速子程序当检测到信号的双沿时进行异或为度时,产生次捕获中断并读取次定时器的数据,根据数据和公式其中为定时器的计数周期算出实际电机转速。由于各种干扰因数,所以对记数器进行平均值算法进行数字滤波主程序流程图开始调用初始化子程序调用启动运行子程序调用测速子程序是否启动调用中断子程序调用运行子程序开始关总中断清中断标志寄存器事件屏蔽寄存器初始化系统寄存器初始化关门狗并对其进行初始化化化时钟寄存器初始化数字端口控制寄存器初始化通用定时器初始化开全比较寄存器捕获寄存器初始化开总中断返回初始化子程序运行子程序流程图开始开中断测速子程序速度﹥启动速度﹥调用电流斩波运行子程序开始读计数器值选择采样次并排序去掉最大值和最小值计算转换为速度调用电流斩波运行子程序返回测速子程序流程图致谢本文的编写工作是在我的老师崔建锋教授悉心指导下完成的。在我毕业设计期间,崔老师给予了我严格认真耐心细致的指导,在此首先感谢我的老师崔建锋教授,感谢他对我学业上的指导和关心,使我在专业方面取得了很大的进步。崔老师广博深厚的知识,严谨求实的治学态度和峰持不懈的钻研精神给了我极大的影响,给我留下了深刻的印象,鞭策我在今后的人生道路上始终以实事求是和兢兢业业的态度对待学习和工作。在此谨向我的老师崔建锋教授致意最真诚的敬意,此外,在我的学习和生活中还得到了其他很多老师,同学的帮助,在此表示感谢。最后要特别感谢我的父母,多年来他们无私的奉献与关爱激励我不断进步,参考文献詹琼华开关磁阻电动机武汉华中理工大学出版社,刘迪吉开关磁阻调速电动机北京北京机械工业出版社,张全柱,郝荣泰,邓新华开关磁阻电动机的几种功率变换器拓扑的性能分析电气传动自动化,王宏华开关型磁阻电动机调速控制技术北京机械工业出版社,刘迪吉,张焕春,傅丰礼等开关磁阻调速电动机北京机械工业出版社,曹家勇,陈幼平,詹琼华,等开关磁阻电动机控制技术的研究现状和发展趋势电动机与控制学报,瞿遂春新型小功率三相开关磁阻调速电机的研究反向门极电流不是件容易的事情,所以选用可关断晶闸管作为功率电路的开关并不理想但其最大连续运行期间的温度为,比的低,其驱动和关断要求高,必须在低电压回路发出突变的触发信号。对于大功率的开关磁阻发电机具有吸行,这样会导致解线性方程组时出现奇异矩阵,导致解的结果不可靠,这种情况随着样本数的增加而更加明显。因此,这种方法适用于那些给定样本数据具有代表性的问题。而对于输入样本数据具有定冗余性的问题来说,这种方法就不太适用。为此,设计者可以考虑在样本密集的地方中心点可以适当多些,样本稀疏的地方中心点可以少些进步的方法是通过自组织的方法自动找到不同区域样本的代表向量。在这种方法中,旦中心点选定,就而已进步确定基函数的扩展系数。例如高斯函数的宽度可以取式中,是所选数据中心之间的最大距离,是数据中心的数目。自组织学习选取中心及网络设计中心通过自组织学习进行聚类,选取聚类中心作为中心,而输出层的权值可以通过解线性方程组,也可以通过有监督的学习规则计算。自组织学习的目的是使的中心位于样本空间的代表性区域。年,和提出种由两个阶段组成的混合学习过程的思路。第阶段为自组织学习阶段,目的是为隐藏层径向基函数的中心估计个合适的位置,可采用聚类算法确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展系数第二阶段为监督学习阶段,用有监督学习算法,如梯度法训练网络得出输出层的权值。虽然可以用批处理来执行上述两种学习阶段,但是用自适应迭代的方法更理想。对于自组织学习过程,我们需要个聚类的算法将所给的数据点剖几个不同的部分,每部分中的数据都尽量有相同性质。种这样的算法为均值聚类算法,他将径向基函数的中心放在输入空间中重要数据点所在的区域上。那么,数据中心的均值聚类算法的步骤如下初始化。选择个互不相同向量作为初始聚类中心,选择方法可以是随机选取。计算各样本点与聚类中心点的距离。相似匹配。将全部样本划分为个子集,每个子集构成个以聚类中心为典型代表的聚类域。更新各类的聚类中心。对各聚类域中的样本取均值表示聚类中心。令,转到第步,重复上述过程,对于均值聚类法,直到时停止训练。各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展系数。,则扩展系数取,为重叠系数。混合学习过程的第二步是用有监督学习算法得到输出层的权值,常采用算法,下节中有所说明。有监督学习选取中心及网络设计关于数据中心的监督学习算法,最般的情况是对输出层各权向量赋小随机数并进行归化处理隐节点函数的中心,扩展系数和输出层权值均采用监督学习算法进行训练,所有参数都经历个误差修正学习过程。以单输出网络为例,采用梯度下降算法。定义目标函数为式中,为训练样本数,为输入第个样本时的误差信号。定义为,式中输出函数忽略了阈值。为使目标函数最小化,各参数修正量应与其负梯度成正比,经推到得计算式为隐单元中心调整函数宽度扩展系数调整输出单元的权值更新上述目标函数是所有训练样本引起的误差的总和,导出的参数修正公式是种批处理式调整。其他方法试验法令扩展参数以增量在定范围,内递增变化,在学习样本中,采用的数据作为训练样本数据,对网络进行训练。然后用训练出的网络对另外为检验样本数据进行预测,最后得出预测值与样本之间的误差矩阵,用式作为评价网络性能的指
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 71 页
第 2 页 / 共 71 页
第 3 页 / 共 71 页
第 4 页 / 共 71 页
第 5 页 / 共 71 页
第 6 页 / 共 71 页
第 7 页 / 共 71 页
第 8 页 / 共 71 页
第 9 页 / 共 71 页
第 10 页 / 共 71 页
第 11 页 / 共 71 页
第 12 页 / 共 71 页
第 13 页 / 共 71 页
第 14 页 / 共 71 页
第 15 页 / 共 71 页
预览结束,还剩
56 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。