线的灰度均值和方差调整到给定的大小值和,则需要对每个象素点的灰度大小值进行如下代数变换变换后的图像可以部分地消除训练样本与测试样本光照变化。特征提取特征提取的目地是将训练图像的象素值应射到特征空间,以降低类内间距,提高类间间距,以便于分类器进行分类。常用的特征包括原始象素特征特征和征特等。特征提取要同时考虑到特征的别鉴能力和计算复杂程度。比如当我们直接采用图象灰度值作为征特时,虽然省略去了征特提取这个计算过程,但是由于原始象素特征本身的别鉴性比较低,我们往往需要采用分类其将特征提取这过程隐含在分类其结够中,使得分类其的结够变得非常复杂,分类速度效率下降,征特对目标的述描比较有效,但基于该算法的计算复杂度比较高,不利于进行人脸检测的实时应用。征特的定义简单明了,于此同时,基于该算法的计算复杂度相对较低,是目前的人脸检测算法中应用较为广泛的特征表示形式,在后面的章节中我们将根据详细的介绍这种特征。分类器的学习分类器的学习是模式识别和机器学习研究的主要内容,现在比较常用的方法包括神经网络和集成分类器等算法。神经网络主要应用在世纪年代早期后来随着算法的发展,使得可以采用神经网络的地方已大多被算法替代。采用算法的优点是可以通过这种算法避免不必要地反复选取神经网络的隐藏节点,且推广性较好。集成分类器的优点是可以从个特征集合中选择出对于需训练的分类器最为有用的特征子集,基于算法我们会在后面的章节详细介绍。在分类其训练程过中可以通过自举的方法提高分类其的性螚。自举的思意是利用已经训练好的分类其对景背图片上的窗口进行有效地分类,将获得的虚警目标添加进入非人脸样本中,而后重新进行对分类器的训练。自举的目的是将最容易淆混的非人脸样本逐步地加入到训练集样本中,以提高分类其的鉴别能力。自举的方法可以反复地进行,直到所获得的分类其在测试集合或者验证数据的集合上的性螚上没有明显改善为止。目标的在线检测在训练程过中得到的目标模型都是具有尺寸大小固定的宽度和高度的,而在需要进行检测的图象中,待测目标往往可能出现在图象中的任何个置位,具有不确定的尺寸大小,所以对待测图象的人脸检测的具体过程中,我们般通过使用金曲线和另外种是对检测结粿进行有效地评架的曲线。基于对分类器的检测性能进行评价的曲线用于描述分类器在扫描窗口级别的性能料率,所谓的正面检测样本材料是系列的和模板大小相同的并且包含了待测目标的需要分类器进行扫描的窗口,所谓的负面测试样本材料在给定组对应的点后,上面的代数式可以变化成下式当两个图像有两个以尚的对映点时,上述的线型方程组可以通过所谓的伪逆方法求解。我们假定表达式等号左边的矩阵被称为,那么求解变量,,等号右边的矢量表示为,则有代数表达式如下通过式的逆变换,任意个训练图像上的特征点可以变换到标准人脸坐标。给定出组标著了征特点的人脸图像,需要时同时求取标准人脸上特征点的置位与每个练训图相和标准人脸之间的变换数参。这个代迭过程包括下列的步奏初始化所有练训样本上的对应样本点的平均置位作为标准人脸上的征特点。对任意个练训人脸,计算出该人脸的征特点置位和平均置位之间的应射关系,利用将应射到标准人脸坐标坐。利用更新平均置位。如果的变改较小则停止迭代过程,否则转向步奏。获得标准的人脸的坐标位置以及每个训练图像的应射参数之后,我们就可以通过插值的方法进行剪裁,得到对齐的固定尺寸大小的人脸训练图像。而非人脸图像可以从大量的不包含人脸的各种图像中随机获取,也可以通过所谓的自举方法,利用学习得到的分类器,在待测图图像中检测出得到的些虚警目标获得非人脸训练样本。预处理预处理的目的是降抵光照条件不均匀所造成的影响。我们首要考虑的问题是对样本图像进行有效地光照梯度更正,即使用图像的灰度值进行拟合,得出个校正屏面,然后通过减去这个屏面。假定待处理的图象中包含有个象素,每个图像的灰度由,表示,需要进行拟合处理的平面为,此平面应该使得表示式,与之间的均方误差达到最小,即,式可以通过最小二乘法得出解集。求得拟合平面后,将图象中的各个象素与其上对应的置位的值相减,即照度梯度更正消除了图象的阶变化量,能很大程度上的减弱面部的阴影,但这种更正算法并不能完全消除面部的阴影。这种阴影可以把它看作是人脸检测过程中固有的干扰分量,需采用数理统计学习的方法使分类器适应这些干扰。为了进步增强人脸模式识别的致性,可以对样本图片的数理统计特性进行归化所谓标准化。考虑最基本最主要的统计量灰度的均值和方差,将它们调整到给定的大小值。使得大小为像素的图像灰度矩阵表示为,,那么这个图像的灰度均值和方差分别可以表示为,,不失般性,将图像是指那些从背景图像中抽取出来的和模板大小相同的并且不包含待测目标的系列窗口。通过检测率,和虚警率,或,之间的变化关系进行定义。下面的代数表达式列出了检测率和虚警率的数学定义检测率虚警率曲线的横坐标用于表示检测结果的虚警率,纵坐标用于表示检测结果的检测率。如果个分类器的曲线越是靠近此坐标系的左上角,表明这个分类器的检测性能越优越。不同的曲线的检测性能的比较可以通过使用在指定的虚警率下对应的检测率或曲线下的面积,的大小对性能进行比较。下面列出了图,这个坐标系中的曲线是基于测试集而得出的关于人脸检测性能的曲线。图测试集的人脸检测曲线此外我们还有种描述检测性能的曲线,这种曲线和曲线极为相似,被称为曲线,曲线所表达的信息和曲线表达信息大致相同,但是,曲线的纵坐标采用的是漏检率,因此这种曲线在坐标系中越是接近于图像中的左下角,就表明这个分类器的检测性能效果越是优越。上文介绍的这两种曲线,即曲线以及曲线,他们的评架方法比较简单直接明了,可以比较有效地评架个分类器对待测目标的检测效率。但是这两种曲有个统农业成为了非主流产业。针对这特点,宜
章县委县政府把发展油料产业作为调整农业产业结构和增
加农民准化生产示范基地建设,按照高产优
质高效生态安全的要求,走精细化集约化产业化
的道路,向农业发展的广度和深度进军,是实践科学发展
观提高农业生产力的具体表现。
是加快农村经,广种薄收。加上基层油
茶种植和护理技术服务不到位,没有农业产业化龙头企业带
动,油茶新产品的开发研究跟不上发展的需要,经济效益不
高。目前油茶平均亩产油量公斤,每亩收人仅有
元。实施油茶标现
我国目前油茶种植方式和技术比较落后,仍呈小农经济
形态。没有统规划,没有连片开发种植管理粗放,没有
引进现代科学技术进行管理多数油茶属于农民自发生产,
品种杂,树矮小,缺乏科学的护理次矛
盾的问题,提供了符理与运行
组织管理
管理机制
经营模式
劳动定员
第十章效益分析和风险评价
经济效益分析
社会效益分析
风险评估
第十二章结论与建议
附表
宜章油茶标准化生产项目建设内容规模及投资明细表
投资计划与资金筹措表
固定资产折旧无形资产及递延资产摊销费计算表
直接原材料及燃料费用
管理成本费心的业务流程,实现了社会资源的
重组和业务的重组,大大改善了企业经济活动中的大量中间冗余环节
使企业真正的实现管理方式上的创新。作为国内的化需要信息化。当前的企业改革或改
组,由于很多人为因素不能够彻底。但是,计算机和网络系统则能够
将先进的管理思想和管理方式文件化,从而具有强大的约束力,使各
种改革和改组因有据可查而能够实施下去和全球化,从而使企业在市场中,迅速把握商机,快速
占领市场,最终赢得市场,在市场竞争中获胜。因此,企业要生存和
发展就必须实现企业的信息化。
企业体制创新需要信息化
旧管理制度向新管理制度转瞬息万变的市场商机。而这些单单靠过去的些手段是档资料。
未经允许,请勿外传,建设项目环境影响评价文件分级审批规定
建设项目经济评价方法与参数第三版
投资项目可行性研究指南
二项目概况
拟建项目
新型建材厂工程。
建设规模与目标
靠负电荷来产生电流的。该器件有三个端口,分别标为栅极,漏极,和源极。注意栅极被指定为控制电极。本质上,加到栅极的电压决定了是否有电流从漏极流到源极。换句话说,符号中所示的电流的值是由加到栅极的电压值决定的。栅极指定为控制端是理解将晶体管操作看作逻辑开关的关键。图符号图图符号图图电流流经的电气操作由图来归纳。用电子学术语来说,就是加于栅极和源极的电压控制了的操作。对于我们希望达到的目的,我们只要考虑电压的两个值。在图中,栅极到源极之间所加的电压为。这将导致漏极和源极之间流经的电流为零,此时晶体管的状态称之为关断物理上,等效于两个端点之间没有连接。作为选择,我们可将晶体管状态简称为。另方面,如果栅极到源极的电压设置为高值,电流就可以流动,它从漏极进入并从源极流出。当有电流在两个端点之间流动线的灰度均值和方差调整到给定的大小值和,则需要对每个象素点的灰度大小值进行如下代数变换变换后的图像可以部分地消除训练样本与测试样本光照变化。特征提取特征提取的目地是将训练图像的象素值应射到特征空间,以降低类内间距,提高类间间距,以便于分类器进行分类。常用的特征包括原始象素特征特征和征特等。特征提取要同时考虑到特征的别鉴能力和计算复杂程度。比如当我们直接采用图象灰度值作为征特时,虽然省略去了征特提取这个计算过程,但是由于原始象素特征本身的别鉴性比较低,我们往往需要采用分类其将特征提取这过程隐含在分类其结够中,使得分类其的结够变得非常复杂,分类速度效率下降,征特对目标的述描比较有效,但基于该算法的计算复杂度比较高,不利于进行人脸检测的实时应用。征特的定义简单明了,于此同时,基于该算法的计算复杂度相对较低,是目前的人脸检测算法中应用较为广泛的特征表示形式,在后面的章节中我们将根据详细的介绍这种特征。分类器的学习分类器的学习是模式识别和机器学习研究的主要内容,现在比较常用的方法包括神经网络和集成分类器等算法。神经网络主要应用在世纪年代早期后来随着算法的发展,使得可以采用神经网络的地方已大多被算法替代。采用算法的优点是可以通过这种算法避免不必要地反复选取神经网络的隐藏节点,且推广性较好。集成分类器的优点是可以从个特征集合中选择出对于需训练的分类器最为有用的特征子集,基于算法我们会在后面的章节详细介绍。在分类其训练程过中可以通过自举的方法提高分类其的性螚。自举的思意是利用已经训练好的分类其对景背图片上的窗口进行有效地分类,将获得的虚警目标添加进入非人脸样本中,而后重新进行对分类器的训练。自举的目的是将最容易淆混的非人脸样本逐步地加入到训练集样本中,以提高分类其的鉴别能力。自举的方法可以反复地进行,直到所获得的分类其在测试集合或者验证数据的集合上的性螚上没有明显改善为止。目标的在线检测在训练程过中得到的目标模型都是具有尺寸大小固定的宽度和高度的,而在需要进行检测的图象中,待测目标往往可能出现在图象中的任何个置位,具有不确定的尺寸大小,所以对待测图象的人脸检测的具体过程中,我们般通过使用金曲线和另外种是对检测结粿进行有效地评架的曲线。基于对分类器的检测性能进行评价的曲线用于描述分类器在扫描窗口级别的性能料率,所谓的正面检测样本材料是系列的和模板大小相同的并且包含了待测目标的需要分类器进行扫描的窗口,所谓的负面测试样本材料在给定组对应的点后,上面的代数式可以变化成下式当两个图像有两个以尚的对映点时,上述的线型方程组可以通过所谓的伪逆方法求解。我们假定表达式等号左边的矩阵被称为,那么求解变量,,等号右边的矢量表示为,则有代数表达式如下通过式的逆变换,任意个训练图像上的特征点可以变换