得大电路,使在到的测量范围下,单频率功率及总功率测量误差均控制在以内。方案选择整体方案选择音频分析仪可分为模拟式与数字式两大类。方案以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法扫描滤波法小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。方案二以为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱频率分量以及周期性等。外围电路少,实现方便,精度高。所以我们选用方案二作为本音频分析仪的实现方式。计算方式选择方案使用硬件实现。的程序编写难度大,短时内不易实现。方案二在中嵌入处理器,通过软件实现。支持语言编程方式,普通的语言版的稍加改正即可应用到本方案中。用硬件实现的算法太复杂了,因此我们选用方案二。采样电路与芯片选择本设计中要求分析的信号峰峰值范围为,用位进行采样,不能满足题目的精度要求,采用位的芯片,其分辨率可达到相对于信号,满足了题目要求的误差范围。同时其的采样频率也满足本设计中的频率要求。信号调理方案信号输入满偏电压在双极性时为,即峰峰值。方案将输入信号放大倍,以达到的满偏输入,以提高的精度。但若输入信号都比较小时,采样精度就会下降。方案二将前端信号放大调理电路分为几个档,针对不同幅度的信号选择合适的通道进行放大,放大倍数以当前信号中的最大峰值为选择基准。这样在输入信号比较小时可以选择比较大的放大倍数,以提高采样的精度。明显方案优于方案。采样及滤波方案选择方案按照奈奎斯特定律采样,以传统模拟方式滤波。传统模拟方式或有源滤波芯片难以实现很好的频带外衰减。从而使运算结果误差增大。方案二在前进行简单的抗混叠滤波,以比较高的速率采样,然后在中用数字滤波器进行精确滤波。滤波后进行二次采样以减少运算量。切比雪夫型低通滤波器有平坦的通带,等波纹的抑制频带适中的过度频带,非常适合于音频滤波。可以使分析达到很好的精度。方案二外围电路要求少,实现方便,我们采用方案二。信号功率的计算。方案通过测真有效值的方式实现,应用普通的真有效值检测芯片可以方便的测出信号在定时间段内的总功率。但对单个频点处的功率测量无能为力。方案二在用得到信号的频谱后根据帕斯瓦尔定律可以很方便的得到信号各频率分量的功率及信号的总功率。因为本设计中我们可以通过得到信号的频谱,因此方案二最适合本设计。总体方案确定经过以上论证我们确定总体设计方案框图如下图系统整体方案框图设计流程系统具体设计与实现前端可控增益放大电路及增益控制电路针对音频信号的特点以及题目中对精度的要求,我们选用了特别适合音频信号处理的经典运放。峰值保持部分使用普通运放。信号进入后首先经过与欧姆精密电阻并联的跟随器,以满足题目中的欧姆输入阻抗的要求,同时增强带后级带负载的能力。然后经过隔直电容进入后级放大电路。放大电路同时设置了,个放大通道,分别对信号进行不同放大,这样将可测量信号的动态范围扩展到了电路图见图。同时通过峰值保持电路记录个运算周期内的信号峰值,通过与设定的参考电压进行比较以确定信号的峰峰值范围,以作为下次采样时放大通道的选择参考控制器通过模拟开关来选择不同的放大通道。峰值保持电路部分采用精密二极管与充电电容进行信号峰值保持。为减小电容漏电流对峰值保持的影响,选择了的电容。每次采样前对读入峰峰值范围并对电容放电以记录下次的峰峰值。输入信号放大通路峰值保持电路混叠滤波我们选择简单易用的管脚可编程滤波芯片来实现,该滤波芯片无需外加外围电路,减少了外界环境对其性能的影响。抗混叠滤波电路图转换转换将输入的模拟电压转换成与之成正比的二进制数字量。转换分直接转换型和间接转换型。直接转换型速度快,如并联比较器转换器。间接转换器型速度慢,如双积分型转换器。逐次比较型转换器也属于直接转换型,但要注意进行多次反馈比较,所以速度比并联比较型慢,但比间接型转换器快。转换要经过采样保持和量化与编码两步实现。采样保持电路对输入模拟信号抽取样值,并展宽保持量化是对样值脉冲进行分级,编码是将分级后的信号转换成二进制代码。在对模拟信号采样时,必须满足采样定理采样脉冲的频率不小于输入模拟信号最高频率分量的倍,即。这样才能做到不失真地恢复出原模拟信号。是美国公司推出的种完整的位并行模数转换单片集成电路。该芯片内部自带采样保持器伏基准电压源时钟源以及可和微处理器总线直接接口的暂存三态输出缓冲器。与原有同系列的相比,的内部结构更加紧凑,集成度更高,工作性能尤其是高低温稳定性也更好,而且可以使设计板面积大大减小,因而可降低成本并提高系统的可靠性。模块电路图数字滤波及核实现方式系列软核处理器是的第二代嵌入式处理器,其性能超过,在中实现仅需美分。特别是,系列支持使用专用指令。专用指令是用户增加的硬件模块,它增加了算术逻辑单元。用户能为系统中使用的每个处理器创建多达个专用指令,这使得设计者能够细致地调整系统硬件以满足性能目标。在中使用软核处理器如比硬核的优势在于硬核实现没有灵活性,通常无法使用最新的技术。随着系统日益先进,基于标准处理器的方案会被淘汰,而基于处理器的方案是基于源码构建的,能够修改以满足新的系统需求,避免了被淘汰的命运。将处理器实现为的核,开发者能够完全定制和外设,获得恰好满足需求的处理器。另外,在提供的里面,可以轻松实现语言到语言的转换,在硬件上实现程序的功能,据测试,硬件加速可以提高倍的运算速度。,测试仪器函数信号发生器函数信号发生器计数器模拟函数发生器模拟双踪示波器数字万用表数字万用表支流稳定电源失真度测试仪秒表信号功率测试电路图指标测试结果输入阻抗测量使用分压法测量在系统输入上串联个的精度的电阻,用数字万用表测量精密电阻和系统输入端的电压比值。用函数信号发生器输出的正弦波用数字万用表测得精密电阻两端测得系统输入端电压信号总功率及各频率分量功率测量使用两台函数信号发生器产生两路信号叠加后进行测试,现列出组典型信号测试结果两路输入电压分别为,。信号功率测量结果单位信号总功率最大功率次大功率各频率点功率和各频率功率和与总功率误差理论值本系统测信号数器电路异步通讯电路总线收发器以及高速的可编程静态和大容量的程序存储器等。伺服驱动器通过采用磁场定向的控制原理和坐标变换,实现矢量控制,同时结合正弦波脉宽调制控制模式对电机进行控制。永磁同步电动机的矢量控制般通过检测或估计电机转子磁通的位置及幅值来控制定子电流或电压,这样,电机的转矩便只和磁通电流有关,与直流电机的控制方法相似,可以得到很高的控制性能。对于永磁同步电机,转子磁通位置与转子机械位置相同,这样通过检测转子的实际位置就可以得知电机转子的磁通位置,从而使永磁同步电机的矢量控制比起异步电机的矢量控制有所简化。伺服驱动器控制交流永磁伺服电机伺服驱动器在控制交流永磁伺服电机时,可分别工作在电流转矩速度位置控制方式下。系统的控制结构框图如图所示由于交流永磁伺服电机采用的是永久磁铁励磁,其磁场可以视为是恒定同时交流永磁伺服电机的电机转速就是同步转速,即其转差为零。这些条件使得交流伺服驱动器在驱动交流永磁伺服电机时的数学模型的复杂程度得以大大的降低。从图可以看出,系统是基于测量电机的两相电流反馈和电机位置。将测得的相电流结合位置信息,经坐标变化从坐标系转换到转子,坐标系,得到分量,分别进入各自得电流调节器。电流调节器的输出经过反向坐标变化从,坐标系转换到坐标系,得到三相电压指令。控制芯片通过这三相电压指令,经过反向延时后,得到路波输出到功率器件,控制电机运行。系统在不同指令输入方式下,指令和反馈通过相应的控制调节器,得到下级的参考指令。在电流环中轴的转矩电流分量是速度控制调节器的输出或外部给定。而般情况下,磁通分量为零,但是当速度大于限定值时,可以通过弱磁,得到更高的速度值。图系统控制结构从坐标系转换到,坐标系有克拉克和帕克变换来是实现从,坐标系转换到坐标系是有克拉克和帕克的逆变换来是实现的。第四章变频器的选择变频技术是应交流电机无级调速的需要而诞生的。世纪年代以后,电力电子器件经历了晶闸管门极可关断晶闸管双极型功率晶体管金属氧化物场效应管静电感应晶体管静电感应晶闸管控制晶体管控制晶闸管绝缘栅双极型晶体管耐高压绝缘栅双极型晶闸管的发展过程,器件的更新促进了电力电子变换技术的不断发展。世纪年代开始,脉宽调制变压变频调速研究引起了人们的高度重视。世纪年代,作为变频技术核心的模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波模式效果最佳。世纪年代后半期开始,美日德英等发达国家的变频器已投入市场并获得了广泛应用。变频器的构成异步电动机用变频器调速运转时的结构图如图所示。通常由变频器主电路或做逆变元件给异步电动机提供调压调频电源。此电源输出的电压或电源及频率,由控制回路指令进行控制。而控制指令则根据外部的运转指令进行运算获得。对于需要精密速度或快速响应的场合,运算还应包含由变频器主电路和传动系统检测出来的信号和保护电路信号,即防止因变频器主电路的过电压,过电流引起的损坏外就,还应保护异步电动机及传动系统等。图变频器的构成图典型的电压型逆变器例主电路得大电路,使在到的测量范围下,单频率功率及总功率测量误差均控制在以内。方案选择整体方案选择音频分析仪可分为模拟式与数字式两大类。方案以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法扫描滤波法小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。方案二以为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱频率分量以及周期性等。外围电路少,实现方便,精度高。所以我们选用方案二作为本音频分析仪的实现方式。计算方式选择方案使用硬件实现。的程序编写难度大,短时内不易实现。方案二在中嵌入处理器,通过软件实现。支持语言编程方式,普通的语言版的稍加改正即可应用到本方案中。用硬件实现的算法太复杂了,因此我们选用方案二。采样电路与芯片选择本设计中要求分析的信号峰峰值范围为,用位进行采样,不能满足题目的精度要求,采用位的芯片,其分辨率可达到相对于信号,满足了题目要求的误差范围。同时其的采样频率也满足本设计中的频率要求。信号调理方案信号输入满偏电压在双极性时为,即峰峰值。方案将输入信号放大倍,以达到的满偏输入,以提高的精度。但若输入信号都比较小时,采样精度就会下降。方案二将前端信号放大调理电路分为几个档,针对不同幅度的信号选择合适的通道进行放大,放大倍数以当前信号中的最大峰值为选择基准。这样在输入信号比较小时可以选择比较大的放大倍数,以提高采样的精度。明显方案优于方案。采样及滤波方案选择方案按照奈奎斯特定律采样,以传统模拟方式滤波。传统模拟方式或有源滤波芯片难以实现很好的频带外衰减。从而使运算结果误差增大。方案二在前进行简单的抗混叠滤波,以比较高的速率采样,然后在中用数字滤波器进行精确滤波。滤波后进行二次采样以减少运算量。切比雪夫型低通滤波器有平坦的通带,等波纹的抑制频带适中的过度频带,非常适合于音频滤波。可以使分析达到很好的精度。方案二外围电路要求少,实现方便,我们采用方案二。信号功率的计算。方案通过测真有效值的方式实现,应用普通的真有效值检测芯片可以方便的测出信号在定时间段内的总功率。但对单个频点处的功率测量无能为力。方案二在用得到信号的频谱后根据帕斯瓦尔定律可以很方便的得到信号各频率分量的功率及信号的总功率。因为本设计中我们可以通过得到信号的频谱,因此方案二最适合本设计。总体方案确定经过以上论证我们确定总体设计方案框图如下图系统整体方案框图设计流程系统具体设计与实现前端可控增益放大电路及增益控制电路针对音频信号的特点以及题目中对精度的要求,我们选用了特别适合音频信号处理的经典运放。峰值保持部分使用普通运放。信号进入后首先经过与欧姆精密电阻并联的跟随器,以满足题目中的欧姆输入阻抗的要求,同时增强带后级带负载的能力。然后经过隔直电容进入后级放大电路。放大电路同时设置了,个放大通道,分别对信号进行不同放大,这样将可测量信号的动态范围扩展到了电路图见图。同时通过峰值保持电路记录个运算周期内的信号峰值,通过与设定的参考
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 65 页
第 2 页 / 共 65 页
第 3 页 / 共 65 页
第 4 页 / 共 65 页
第 5 页 / 共 65 页
第 6 页 / 共 65 页
第 7 页 / 共 65 页
第 8 页 / 共 65 页
第 9 页 / 共 65 页
第 10 页 / 共 65 页
第 11 页 / 共 65 页
第 12 页 / 共 65 页
第 13 页 / 共 65 页
第 14 页 / 共 65 页
第 15 页 / 共 65 页
预览结束,还剩
50 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。