的算法则相交。另方面,当偏置变大,然后中央位置的不同间隔距离很大,而且他们不相交。由于我们对有关信息,没有先验知识,我们将使用种特定的统计学方法得到的标准,即自适应算法选择的值问题。这个标准的平衡状态,从或同个数量级的,即。提出的联合算法现在可以被总结为下面的步骤第步从不同预定义设置中为算法计算,。第步估计每个算法的方差。第步检查是否相交对于算法。从个最大的差异值算法走向与差异较小的值。根据,复杂度增加了。这表明了各自增长了算法。增加了对的补充和的讨论对于算法,其增加了乘法,的添加,以及决定至少。这些值表明,虽然计算复杂但具有其独特的优势。结论组合算法,在自适应系统中将这些参数变化的跟踪与算法的良好性能结果相结合,是自适应过程中选择的更好的算法,直到稳定状态时需要从最优值与最小方差算法的加权系数的偏差。和取舍的标准,如果下式成立那么将会减少这个检查当,和以下关系成立,如果没有相交大偏差选择具有最大的方差的值算法。如果相交,偏差已经很小。因此,检查了对新的加权系数,或者,如果是最后对,只选择具有最小方差的算法。首先两个区间不相交意味着实现了取舍标准,并选择最大方差算法。第步转到下个瞬间。元素的集合中最小的数。在这种情况下,应提供良好的跟踪快速变化最大的差异,而其他应提供小的方差的稳定状态。通过增加更多的观察,这两个极端之间,我们可以稍微改进算法的瞬态行为。需要注意的是,只有未知值的差异。在仿真中我们估计式当,和替代的方法是估计为有关表达式和在稳定状态为算法的不同类型,从已知文献中可以看出。对于标准的算法在稳定状态,和是相关的。,需要注意的是,任何其他估计对于滤波器来说是有效的。的复杂性取决于组成算法第步,并在决策算法步骤。加权系数的计算并未使并行算法增加计算时间,因为它是由硬件实现并行执行的,从而增加了硬件要求。方差估计步骤,忽略了有助于提高算法的复杂性,因为他们是刚刚开始的时候,他们正在使用单独适应硬件实现。简单的分析表明,在增加最多的操作步骤,添加了−和−决定增补,而且需要添加些硬件以满足组成算法。组合自适应滤波器举例考虑由两个不同步骤的算法相结合的系统鉴定。在这里,参数是,即。未知的系统有四个时间不变系数,而且滤波器的。我们给个人平均为方差算法,以及它们的结合,如图所示。结果,获得了平均超过蒙特卡罗方法个独立的运行,其中。它引用了未知损坏不相关零均值高斯噪声,其中κ在最初的次迭代的方差估计根据式和的加权来计算的系数。图中提出,第次使用的与的,然后在稳定状态,与的。需要注意的是第和第迭代,该算法可以采取任何步长根据不同的认识。在这里,将通过增加计算量与并行算法都得到改善,同时还认为,在稳定状态下,不能理想的接近小步长的算法,原因是该方法的统计特性。,组合自适应滤波器能够达到更好的性能如果阶段瞬态和稳态滤波器的输出。这些参数的选择主要是基于种算法质量的权衡中所提到的适应性能。我们提出了个自适应滤波器的性能改善的方法。也就是说,我们提出了几个基于算法的不同参数的滤波器,并提供不同的适应阶段选择最合适的算法标准。这种方法可以适用于所有的的算法,虽然我们在这里只考虑其中几个。本文的结构如下,作者认为的的算法概述载于第节,第节提出了自适应算法的改进和组合标准,仿真结果在第节。基于的算法让我们定义输入信号向量和矢量加权系数为权重系数向量计算应根据其中为算法步长是预期值的估计。在中,常数表式误差,是个参考信号。根据中不同的预期值估计在,我们可以得出种各种形式的自适应算法的定义,变步长算法和基本算法具有相同的形式,但在适应过程中步长是变化的,。正在研究中的自适应滤波问题在于尝试调整权重系数,使系统的输出跟踪参考信号,中是个零均值与方差的高斯噪声,是最佳权向量维纳向量。我们考虑两种情况是个常数固定的情况下,随时间变化非平稳的情况下。在非平稳情况下,未知系统参数即最佳载体是随时间变化的。我们假设变量可以建立模型为,它是随机独立的零均值,依赖于和自相关矩阵。注意分析直接服从,如果,的条件是满足的,那么加权系数向量收敛于维纳解。定义加权错位系数,,。是因为这两个梯度噪声加权系数的平均值左右的变化和加权矢量滞后平均及最佳值的差额的影响,。它可以表示为根据,是是加权系数的偏差,与方差是零均值的随机变量差,它取决于的算法类型,以及外部噪声方差。因此,如果噪声方差为常数或是缓慢变化的,为特定的基于时间不变的算法。在这个意义上说,在后面的分析中我们将假定只依赖算法类型,及其参数。自适应滤波器的个重要性能衡量标准是其均方差的加权系数。对于自适应滤波器,它被赋值,组合自适应滤波器合并后的自适应滤波器的基本思想是在两个或两个以上自适应算法并行实现与每个迭代之间的最佳选择,。在每次迭代中选择最合适的算法,选择最佳的加权系数值。最好的加权系数是,即在给定的时刻,向相应的维纳矢量值最接近。让,是以基本算法为基础的第个加权系数,在瞬间选择参数和系数。注意,现在我们可以在个统的处理方式≡,≡,≡下。基于算法的行为主要依赖于,在每个迭代中有个最佳值,生产的最佳表现的自适应算法。现在分析最小均方与些基于相同类型的算法相结合的自适应滤波器,但参数是不同的。加权系数周围分布随机变量和,和方差,相关,。中的概率κ依赖κ的值例如κ的高斯分布,κ两个规则。置信区间的定义,,接着,从式到式我们认为只要,关于独立,这意味着,对于小偏差,置信区间对同的的算法是不同的,而对同的该独总站和森林公安分局,下
辖个国有林场,华森公司,个木竹检查站,个森林公安派出所和
个乡镇林业站,林业系统在职职省道三仙线蔡大国
防公路等公路干线贯穿全境,东南部与皖赣铁路相连。全县乡乡通公
路,村村有机耕道,电信网全面覆盖,已形成较为完备的交通与通信
网络。
项目县林业机构基本情况
旌德县林业局其它用地万亩,耕地面积万亩,人均耕地
面积亩。粮食单产公斤亩,粮食总产量万吨,人均占有粮
食公斤。全县国民生产总值亿元,农业总产值亿元,其
中林业产值亿元。
境内交通条件便捷,国道栎甜槠木荷
各类土地面积统计表
社会经济情况统计表
立地条件类型表
技术模型表
经济模型表
投资概算表
多品系造林规划设计小班登记表
中幼林抚育间伐小班登记表
大径材培育小班登记表
附图
杉木速生丰产林营造技术推广示范项目位置图
杉木速生丰产林营造技术推广示范项目布局
项目概要
项目名称杉木速生丰产林营造技术推广示范项目
项目承建单位旌德县林业局
项目第责任人丁士龙
项目技术负责人陈喜友
项目建设地点旌德县
建设内容与规模总规模为亩,其中杉木无性系苗木繁育
交通方便相对
集中,有定规模的中等质量林分来越高,我们只有按国际标准生产出无公害优质特色羊肉,才能在激烈的市场竞争
中站稳脚跟自古至今群众都有经
商养殖的习惯。建设,推进现代农业产业化进程,增加农民
收入具有重要的意义。
有利于加速农业产业化进程。
在现代农业中,畜牧业越来越成为大农业经济中起主导作用的产
在农民收入中的比重,加大扶持力度,扩大规模
养殖,完善服务体系,扩展产业链条,加快品种改良步伐,增强群众
养羊的积极性,使羊产业真正成为群众增收的主要渠道。
宝丰镇是个人杰地灵,历史悠久的古镇府高度重视畜牧业发展,把羊产业发展纳入了全县农民增
收的重点含有质量分数为铬的铁铬二元合金不发生转变,除了液态转变为固态,并且所有的铁素体都处在室温下。对于铬的二元合金,出现的相变,但是快速冷却会导致室温下存有残余奥氏体。这是与碳化物有关的,然而些合金元素也许会影响这种转变顺序,因为些元素如是强碳化物形成元素,并且将会限制相区,因为它会结合此为奥氏体稳定元素。表列出钢中的合金元素说明铁素体形成在凝固过程中。说,含量较高的钢,相体积分数较小时也是由于铁素体晶界固态相变形成的,在冷却至环境温度的过程中。凝固试验用于这项生产铸造金属试样工作的熔体与基体接触装置如图所示。试验是用镀铜基体嵌入移动搅拌棒中做的,搅拌棒是用来穿透熔体类似于熔体与辊接触时双辊薄带连铸半月板区域的几何结构。在这项技术中的晶向。相比之下,图中的晶粒有立方形颗粒,在冷硬铸型表面法线方向与晶向所成的角范围内,并且晶向与颗粒对角线平行。关于三个立方形颗粒有限的结论给出了个取向关系,接近于和铁素体之间的估计值,如下∥铁素体∥铁素体这样的取向关系以前在铁素体不锈钢的焊接和铸造中已经发现,结果的算法则相交。另方面,当偏置变大,然后中央位置的不同间隔距离很大,而且他们不相交。由于我们对有关信息,没有先验知识,我们将使用种特定的统计学方法得到的标准,即自适应算法选择的值问题。这个标准的平衡状态,从或同个数量级的,即。提出的联合算法现在可以被总结为下面的步骤第步从不同预定义设置中为算法计算,。第步估计每个算法的方差。第步检查是否相交对于算法。从个最大的差异值算法走向与差异较小的值。根据,复杂度增加了。这表明了各自增长了算法。增加了对的补充和的讨论对于算法,其增加了乘法,的添加,以及决定至少。这些值表明,虽然计算复杂但具有其独特的优势。结论组合算法,在自适应系统中将这些参数变化的跟踪与算法的良好性能结果相结合,是自适应过程中选择的更好的算法,直到稳定状态时需要从最优值与最小方差算法的加权系数的偏差。和取舍的标准,如果下式成立那么将会减少这个检查当,和以下关系成立,如果没有相交大偏差选择具有最大的方差的值算法。如果相交,偏差已经很小。因此,检查了对新的加权系数,或者,如果是最后对,只选择具有最小方差的算法。首先两个区间不相交意味着实现了取舍标准,并选择最大方差算法。第步转到下个瞬间。元素的集合中最小的数。在这种情况下,应提供良好的跟踪快速变化最大的差异,而其他应提供小的方差的稳定状态。通过增加更多的观察,这两个极端之间,我们可以稍微改进算法的瞬态行为。需要注意的是,只有未知值的差异。在仿真中我们估计式当,和替代的方法是估计为有关表达式和在稳定状态为算法的不同类型,从已知文献中可以看出。对于标准的算法在稳定状态,和是相关的。,需要注意的是,任何其他估计对于滤波器来说是有效的。的复杂性取决于组成算法第步,并在决策算法步骤。加权系数的计算并未使并行算法增加计算时间,因为它是由硬件实现并行执行的,从而增加了硬件要求。方差估计步骤,忽略了有助于提高算法的复杂性,因为他们是刚刚开始的时候,他们正在使用单独适应硬件实现。简单的分析表明,在增加最多的操作步骤,添加了−和−决定增补,而且需要添加些硬件以满足组成算法。组合自适应滤波器举例考虑由两个不同步骤的算法相结合的系统鉴定。在这里,参数是,即。未知的系统有四个时间不变系数,而且滤波器的。我们给个人平均为方差算法,以及它们的结合,如图所示。结果,获得了平均超过蒙特卡罗方法个独立的运行,其中。它引用了未知损坏不相关零均值高斯噪声,其中κ在最初的次迭代的方差估计根据式和的加权来计算的系数。图中提出,第次使用的与的,然后在稳定状态,与的。需要注意的是第和第迭代,该算法可以采取任何步长根据不同的认识。在这里,将通过增加计算量与并行算法都得到改善,同时还认为,在稳定状态下,不能理想的接近小步长的算法,原因是该方法的统计特性。,组合自适应滤波器能够达到更好的性能如