考电压进行比较以确定信号的峰峰值范围,以作为下次采样时放大通道的选择参考控制器通过模拟开关来选择不同的放大通道。峰值保持电路部分采用精密二极管与充电电容进行信号峰值保持。为减小电容漏电流对峰值保持的影响,选择了的电容。每次采样前对读入峰峰值范围并对电容放电以记录下次的峰峰值。输入信号放大通路峰值保持电路混叠滤波我们选择简单易用的管脚可编程滤波芯片来实现,该滤波芯片无需外加外围电路,减少了外界环境对其性能的影响。抗混叠滤波电路图转换转换将输入的模拟电压转换成与之成正比的二进制数字量。转换分直接转换型和间接转换型。直接转换型速度快,如并联比较器转换器。间接转换器型速度慢,如双积分型转换器。逐次比较型转换器也属于直接转换型,但要注意进行多次反馈比较,所以速度比并联比较型慢,但比间接型转换器快。转换要经过采样保持和量化与编码两步实现。采样保持电路对输入模拟信号抽取样值,并展宽保持量化是对样值脉冲进行分级,编码是将分级后的信号转换成二进制代码。在对模拟信号采样时,必须满足采样定理采样脉冲的频率不小于输入模拟信号最高频率分量的倍,即。这样才能做到不失真地恢复出原模拟信号。是美国公司推出的种完整的位并行模数转换单片集成电路。该芯片内部自带采样保持器伏基准电压源时钟源以及可和微处理器总线直接接口的暂存三态输出缓冲器。与原有同系列的相比,的内部结构更加紧凑,集成度更高,工作性能尤其是高低温稳定性也更好,而且可以使设计板面积大大减小,因而可降低成本并提高系统的可靠性。模块电路图数字滤波及核实现方式系列软核处理器是的第二代嵌入式处理器,其性能超过,在中实现仅需美分。特别是,系列支持使用专用指令。专用指令是用户增加的硬件模块,它增加了算术逻辑单元。用户能为系统中使用的每个处理器创建多达个专用指令,这使得设计者能够细致地调整系统硬件以满足性能目标。在中使用软核处理器如比硬核的优势在于硬核实现没有灵活性,通常无法使用最新的技术。随着系统日益先进,基于标准处理器的方案会被淘汰,而基于处理器的方案是基于源码构建的,能够修改以满足新的系统需求,避免了被淘汰的命运。将处理器实现为的核,开发者能够完全定制和外设,获得恰好满足需求的处理器。另外,在提供的里面,可以轻松实现语言到语言的转换,在硬件上实现程序的功能,据测试,硬件加速可以提高倍的运算速度。,测试仪器函数信号发生器函数信号发生器计数器模拟函数发生器模拟双踪示波器数字万用表数字万用表支流稳定电源失真度测试仪秒表信号功率测试电路图指标测试结果输入阻抗测量使用分压法测量在系统输入上串联个的精度的电阻,用数字万用表测量精密电阻和系统输入端的电压比值。用函数信号发生器输出的正弦波用数字万用表测得精密电阻两端测得系统输入端电压信号总功率及各频率分量功率测量使用两台函数信号发生器产生两路信号叠加后进行测试,现列出组典型信号测试结果两路输入电压分别为,。信号功率测量结果单位信号总功率最大功率次大功率各频率点功率和各频率功率和与总功率误差理论值本系统测得大电路,使在到的测量范围下,单频率功率及总功率测量误差均控制在以内。方案选择整体方案选择音频分析仪可分为模拟式与数字式两大类。方案以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法扫描滤波法小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。方案二以为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱频率分量以及周期性等。外围电路少,实现方便,精度高。所以我们选用方案二作为本音频分析仪的实现方式。计算方式选择方案使用硬件实现。的程序编写难度大,短时内不易实现。方案二在中嵌入处理器,通过软件实现。支持语言编程方式,普通的语言版的稍加改正即可应用到本方案中。用硬件实现的算法太复杂了,因此我们选用方案二。采样电路与芯片选择本设计中要求分析的信号峰峰值范围为,用位进行采样,不能满足题目的精度要求,采用位的芯片,其分辨率可达到相对于信号,满足了题目要求的误差范围。同时其的采样频率也满足本设计中的频率要求。信号调理方案信号输入满偏电压在双极性时为,即峰峰值。方案将输入信号放大倍,以达到的满偏输入,以提高的精度。但若输入信号都比较小时,采样精度就会下降。方案二将前端信号放大调理电路分为几个档,针对不同幅度的信号选择合适的通道进行放大,放大倍数以当前信号中的最大峰值为选择基准。这样在输入信号比较小时可以选择比较大的放大倍数,以提高采样的精度。明显方案优于方案。采样及滤波方案选择方案按照奈奎斯特定律采样,以传统模拟方式滤波。传统模拟方式或有源滤波芯片难以实现很好的频带外衰减。从而使运算结果误差增大。方案二在前进行简单的抗混叠滤波,以比较高的速率采样,然后在中用数字滤波器进行精确滤波。滤波后进行二次采样以减少运算量。切比雪夫型低通滤波器有平坦的通带,等波纹的抑制频带适中的过度频带,非常适合于音频滤波。可以使分析达到很好的精度。方案二外围电路要求少,实现方便,我们采用方案二。信号功率的计算。方案通过测真有效值的方式实现,应用普通的真有效值检测芯片可以方便的测出信号在定时间段内的总功率。但对单个频点处的功率测量无能为力。方案二在用得到信号的频谱后根据帕斯瓦尔定律可以很方便的得到信号各频率分量的功率及信号的总功率。因为本设计中我们可以通过得到信号的频谱,因此方案二最适合本设计。总体方案确定经过以上论证我们确定总体设计方案框图如下图系统整体方案框图设计流程系统具体设计与实现前端可控增益放大电路及增益控制电路针对音频信号的特点以及题目中对精度的要求,我们选用了特别适合音频信号处理的经典运放。峰值保持部分使用普通运放。信号进入后首先经过与欧姆精密电阻并联的跟随器,以满足题目中的欧姆输入阻抗的要求,同时增强带后级带负载的能力。然后经过隔直电容进入后级放大电路。放大电路同时设置了,个放大通道,分别对信号进行不同放大,这样将可测量信号的动态范围扩展到了电路图见图。同时通过峰值保持电路记录个运算周期内的信号峰值,通过与设定的参信号要设置得比较小可以选择到,若步长过大加工粗来的表面的余量可能会比较大,不符合精铣的要求。内面粗加工的走刀方式如图所示,为沿叶身的长度方向。图内面粗加工走刀方式预览叶身曲面精加工序列叶身曲面精加工序列用轴铣削的方式。由于使用的是球头刀,为了达到便面粗糙度要求必须设定较小的步长,但是过小的步长又会导致加工效率降低。走刀方式设置成沿叶身型面型线的轨迹比较合理。刀具轨迹和加工仿真完成以上各项设置后就可进行的屏幕演示,在屏幕演示中可以看到刀具轨迹。图为叶身背面粗加工的刀轨演示图为叶身内面粗加工的刀轨演示图是叶身曲面精加工的刀轨演示。若该走刀路线不合要求,可以再返回设置定义切削来更改走刀方式。由于精加工的步长较小,刀轨较密集,在图中显示得就是片红色。图背面粗加工刀轨图内面粗加工刀轨图叶身曲面精加工刀轨中集成了加工仿真模块前提是已经安装模块,可以进行检查,模拟刀具材料的切除过程。其中粗加工的仿真图如图背面图所示内面精加工的仿真如图所示。图是叶片精加工完成后的仿真图,仔细观察,可发现加工刀痕非常细微。图背面铣削仿真图内面铣削仿真图精加工仿真图仿真效果图刀位文件和后置处理在的模块中对进行检查仿真后就可以生产正确的刀具轨迹文件,但是自动编程的对刀具轨迹计算产生的是刀具效果图致谢参考文献杨光海汽轮机叶片的安全防护北京机械工业出版社,任钦海汽轮机叶片模具二次开发与应用技术研究硕士学位论文无锡江南大学机械工程学院秦忠汽轮机叶片专用夹具设计专家系统的研究无锡江南大学,苏莹,郭旭伟,张华基于并联机床的汽轮机叶片加工。黑龙江科技信息,高级铣加工应用培训教程,北京清华大学,高礼凯,吕彦明,藤树新基于的汽轮机叶片夹具参数化设计,研究研发,年月,第期何华妹,中文版实例详解,人民邮电出版社,年月曾向阳,谢国明,王学平,基础及应用教程,北京电子工业出版社,智中生,王长生混合式水轮机叶片数控加工工艺过程,大电机技术,年王朝华汽轮机叶片裂纹磁粉检测工艺选择与应用河南电力试验研究院,袁晓阳汽轮机调节级动叶片加工工艺东方汽轮机有限公司,,,余忠华,曾复,吴昭同,严拱标叶片型面的三坐标检测程序自动生成系统浙江大学,张强,李立波利用软件对汽轮机叶片的数控加工哈尔澳汽轮机厂林德源,陈开路,陈秉忠汽轮机叶片形叶根的超声横波探伤福建省电力试验研究院,孙盛丽,金龙德,张学泳,赵昕汽轮机叶片型外包叶根加工工艺研究哈尔滨汽轮机有限责任公司,潘毅,章泳健汽轮机叶片的三维几何造型方法综述常熟理工学院机电工程系,周岳琨,王建新,管继伟,黄钢,于长利汽轮机叶片设计和几何成型方法综述哈尔滨汽轮机厂有限责任公司,杨志勇,唐胜利汽轮机扭叶片的虚拟设计重庆大学动力工程学,位数据文件,不能被机床直接识别。必须把文件转换成目标机床能执行的数控程序,然后输入到数控系统中才能对工件进行数控加工。在模式下打开加工文件,选择应用程序后置处理器命令就进入到后处理模式。通过自带的后处理文件,将文件转换成代码,代码详见附件。叶片的实际加工如图所示。考电压进行比较以确定信号的峰峰值范围,以作为下次采样时放大通道的选择参考控制器通过模拟开关来选择不同的放大通道。峰值保持电路部分采用精密二极管与充电电容进行信号峰值保持。为减小电容漏电流对峰值保持的影响,选择了的电容。每次采样前对读入峰峰值范围并对电容放电以记录下次的峰峰值。输入信号放大通路峰值保持电路混叠滤波我们选择简单易用的管脚可编程滤波芯片来实现,该滤波芯片无需外加外围电路,减少了外界环境对其性能的影响。抗混叠滤波电路图转换转换将输入的模拟电压转换成与之成正比的二进制数字量。转换分直接转换型和间接转换型。直接转换型速度快,如并联比较器转换器。间接转换器型速度慢,如双积分型转换器。逐次比较型转换器也属于直接转换型,但要注意进行多次反馈比较,所以速度比并联比较型慢,但比间接型转换器快。转换要经过采样保持和量化与编码两步实现。采样保持电路对输入模拟信号抽取样值,并展宽保持量化是对样值脉冲进行分级,编码是将分级后的信号转换成二进制代码。在对模拟信号采样时,必须满足采样定理采样脉冲的频率不小于输入模拟信号最高频率分量的倍,即。这样才能做到不失真地恢复出原模拟信号。是美国公司推出的种完整的位并行模数转换单片集成电路。该芯片内部自带采样保持器伏基准电压源时钟源以及可和微处理器总线直接接口的暂存三态输出缓冲器。与原有同系列的相比,的内部结构更加紧凑,集成度更高,工作性能尤其是高低温稳定性也更好,而且可以使设计板面积大大减小,因而可降低成本并提高系统的可靠性。模块电路图数字滤波及核实现方式系列软核处理器是的第二代嵌入式处理器,其性能超过,在中实现仅需美分。特别是,系列支持使用专用指令。专用指令是用户增加的硬件模块,它增加了算术逻辑单元。用户能为系统中使用的每个处理器创建多达个专用指令,这使得设计者能够细致地调整系统硬件以满足性能目标。在中使用软核处理器如比硬核的优势在于硬核实现没有灵活性,通常无法使用最新的技术。随着系统日益先进,基于标准处理器的方案会被淘汰,而基于处理器的方案是基于源码构建的,能够修改以满足新的系统需求,避免了被淘汰的命运。将处理器实现为的核,开发者能够完全定制和外设,获得恰好满足需求的处理器。另外,在提供的里面,可以轻松实现语言到语言的转换,在硬件上实现程序的功能,据测试,硬件加速可以提高倍的运算速度。,测试仪器函数信号发生器函数信号发生器计数器模拟函数发生器模拟双踪示波器数字万用表数字万用表支流稳定电源失真度测试仪秒表信号功率测试电路图指标测试结果输入阻抗测量使用分压法测量在系统输入上串联个的精度的电阻,用数字万用表测量精密电阻和系统输入端的电压比值。用函数信号发生器输出的正弦波用数字万用表测得精密电阻两端测得系统输入端电压信号总功率及各频率分量功率测量使用两台函数信号发生器产生两路信号叠加后进行测试,现列出组典型信号测试结果两路输入电压分别为,。信号功率测量结果单位信号总功率最大功率次大功率各频率点功率和各频率功率和与总功率误差理论值本系统测