算法,是类借鉴生物界的进化规则适者生存,优胜劣汰遗传机制演化而来的种全局自适应优化概率搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖交叉和基因突变现象,在每次迭代中都保留组候选解,并按照些指标从解群中选取较优的个体,利用遗传算子选择交叉和变异对这些个体进行组合,产生新代的候选解群,重复此过程,直到选出满足些收敛指标为止。用遗传算法优化平滑参数的步骤为定义规模为的初始种群根据缺交叉预测的方法,分别计算每个个体的适应度根据得到的适应度,保留若干个适应度大的优良个体④执行选择交换变异操作,生成新代种群判断是否满足终止条件,若是,求出最优解若否,返回至步骤。终止条件可以设置成连续进化几代后,最优值仍然保持不变,或已经达到最大进化代数。最终,经过遗传算法优化,得到最优值。图遗传算法的运算流程基于神经网络的风功率预测建模方法问题描述我国的风电开发已具有相当规模,为保证风电并网后电网安全可靠运行,电网企业作为风电的实际调度主体,熟悉大范围内风电运行特性,应充分发挥自身优势,参与风电功率预测系统的开发建设工作,不断完善风电功率预测系统的功能,并且根据我国实际特点,电网企业能够有条件制定适应我国风电开发特点的风电功率预测执行规范。风电场功率预测是指风电场经营企业根据气象条件统计规律等技术和手段,提前对定运行时间内风电场发电有功功率进行分析预报,向电网调度机构提交预报结果,提高风电场与电力系统协调运行的能力。根据电力调度部门安排运行方式的不同需求,风电功率预测分为日前预测和实时预测。日前预测是预测明日小时个时点每分钟个时点的风功率数值。实时预测是滚动地预测每个时点未来小时内的个时点每分钟个时点的风功率数值。按预测时间的不同又可分为长期预测中期预测短期预测超短期预测。其中超短期预测是提前几个小时或几十分钟预测。本例预于均值聚类法,直到时停止训练。各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展系数。,则扩展系数取,为重叠系数。混合学习过程的第二步是用有监督学习算法得到输出层的权值,常采用算法,下节中有所说明。有监督学习选取中心及网络设计关于数据中心的监督学习算法,最般的情况是对输出层各权向量赋小随机数并进行归化处理隐节点函数的中心,扩展系数和输出层权值均采用监督学习算法进行训练,所有参数都经历个误差修正学习过程。以单输出网络为例,采用梯度下降算法。定义目标函数为式中,为训练样本数,为输入第个样本时的误差信号。定义为,式中输出函数忽略了阈值。为使目标函数最小化,各参数修正量应与其负梯度成正比,经推到得计算式为隐单元中心调整函数宽度扩展系数调整输出单元的权值更新上述目标函数是所有训练样本引起的误差的总和,导出的参数修正公式是种批处理式调整。其他方法试验法令扩展参数以增量在定范围,内递增变化,在学习样本中,采用的数据作为训练样本数据,对网络进行训练。然后用训练出的网络对另外为检验样本数据进行预测,最后得出预测值与样本之间的误差矩阵,用式作为评价网络性能的指测是根据从风电场获得的风电机组输出功率数据,运用神经网络对风功率进行超短期实时预测并检验预测结果。数据预处理合理性检验风电场输出功率值应均为正值,且不能大于总机组安装容量,故数值范围为单位为。在此数值要求情况下,对风电场输出功率数据进行适当修正。数据标准化在保证数据信息损失小的前提下,为减少网络的训练时间,利用最大最小标准化为数据进行归化,并对数值保留小数点后四位。归化计算公式为式中,和分别为校正风功率数据中的最大值和最小值,该公式将数据归化到,之间。转化矩阵形式对时间序列数据进行,这样会导致解线性方程组时出现奇异矩阵,导致解的结果不可靠,这种情况随着样本数的增加而更加明显。因此,这种方法适用于那些给定样本数据具有代表性的问题。而对于输入样本数据具有定冗余性的问题来说,这种方法就不太适用。为此,设计者可以考虑在样本密集的地方中心点可以适当多些,样本稀疏的地方中心点可以少些进步的方法是通过自组织的方法自动找到不同区域样本的代表向量。在这种方法中,旦中心点选定,就而已进步确定基函数的扩展系数。例如高斯函数的宽度可以取式中,是所选数据中心之间的最大距离,是数据中心的数目。自组织学习选取中心及网络设计中心通过自组织学习进行聚类,选取聚类中心作为中心,而输出层的权值可以通过解线性方程组,也可以通过有监督的学习规则计算。自组织学习的目的是使的中心位于样本空间的代表性区域。年,和提出种由两个阶段组成的混合学习过程的思路。第阶段为自组织学习阶段,目的是为隐藏层径向基函数的中心估计个合适的位置,可采用聚类算法确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展系数第二阶段为监督学习阶段,用有监督学习算法,如梯度法训练网络得出输出层的权值。虽然可以用批处理来执行上述两种学习阶段,但是用自适应迭代的方法更理想。对于自组织学习过程,我们需要个聚类的算法将所给的数据点剖几个不同的部分,每部分中的数据都尽量有相同性质。种这样的算法为均值聚类算法,他将径向基函数的中心放在输入空间中重要数据点所在的区域上。那么,数据中心的均值聚类算法的步骤如下初始化。选择个互不相同向量作为初始聚类中心,选择方法可以是随机选取。计算各样本点与聚类中心点的距离。相似匹配。将全部样本划分为个子集,每个子集构成个以聚类中心为典型代表的聚类域。更新各类的聚类中心。对各聚类域中的样本取均值表示聚类中心。令,转到第步,重复上述过程,对标,将能够令误差最小的扩展参数的值选出,并用在最后的网络预测中,而式可以作为网络训练的终止准则。可以看出,扩展参数的确定过程体现了对网络性能的验证过程。文中由于将预测的数据均标准化至,区间内,输入向量之间距离的最大及最小值分别为和,因此选择扩展参数由,并以步长为进行变化。采用进化优选算法选择中心把网络的结构设计问题归结为寻找最优选择路径问题,然后采用进化策略进行寻找,从而得到最优的数据中心及扩展系数。例如基于免疫算法的网络优化基于遗传算法的网络优化。下面以遗传算法为例介绍。遗传截断果可轻松放入各类文档。用该软件进行设计分析非常方便。本文在Ⅱ基础上设计电子时钟,是由数字集成电路构成用数码管显示的种现代计时器,与传统机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此广泛使用。Ⅱ是美国加州公司推出的专门用于电子线路仿真实验与设计的虚拟电子工作平台。Ⅱ是种在电子技术工程与电子技术教学中广泛应用的优秀计算机仿真软件,被公认为是最易使用,人机界面最友善的数字系统开发软件,特别适合初学者使用。设计电子钟的可行性分析选用Ⅱ软件,以计算机作为载体。通过使用Ⅱ软件,设计实现个数字电子钟。并使数字钟具有校时校分校秒及整点报时功能。掌握使用Ⅱ软件完成基本电路的设计。设计数字电子钟的条件具备,设计是可行的。第二章设计依据设计总体方案多功能数字钟电路的设计总体方案框图如图所示,由控制电路两个进制计数器个进制计数器译码器显示器和扬声器组成。控制电路控制计数器计时和扬声器报时。计数器对秒分小时进行计时,当计时到时分秒时,来个计数脉冲,则计数器清零,重新开始计时。译码器将计数器输出的码计时结果转换成十进制送到显示器。显示器显示时分秒计时结果。图总体方案框图设计原理数字电子钟由振荡器分频器计数器译码显示器报时等电路组成。其中振荡器和分频器组成标准秒信号发生器,由不同进制的计数器译码器和显示器组成计时系统。秒信号送入计数器进行计数,把累加的结果以时分秒的数字显示出来。时显示由进制计数器译码器显示器构成。分秒显示分别由进制计数器译码器显示器构成。可进行整点报时,计时出现误差时,可以用校时电路校时校分。设计目标和方法Ⅱ软件作为电子钟设计工作平台,以数字电路为设计电子钟的理论基础,按照自顶向下的层次化设计方法设计该电路,对整个系统进行方案设计和功能划分,系统的关键电路用片或几片专用集成电路实现,应用Ⅱ软件进行数字电路的设计与仿真。第三章电子钟系统设计电子钟功能分析总体规划电子钟功能分析电子钟基本功能设计目标数字钟能进行正常的时分秒计时,小时计时要求为进制循环,分和秒计时要求为进制循环。电子钟扩展功能设计目标整点报时要求逢整点报时,在即到整点时,扬声器发出最后声整点报时。校时校正时间,能够通过手动按键来调整时间,实现校时功能,具有闹钟功能。总体规划数字电子钟主干电路系统由秒信号发生器时分秒计数器译码器及显示器校时电路整点报时电路组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,般用石英晶体振荡器和分频器来实现。将标准秒信号送入秒计数器,秒计数器采用进制计数器,每累计秒发出个分脉冲信号,该信号将作为分计数器的时钟脉冲。分计数器也采用进制计数器,每累计分钟,发出个时脉冲信号,该信号将被送到时计数器。时计数器采用进制计时器,可实现小时的累计。通过六个显示器显示出来。整点报时电路根据计时系统的输出状态产生脉冲信号,然后去触发音频发生器实现报时。校时电路用来对时分秒显示数字进行校对调整。电子钟系统总体规划如图所示图电子钟系统总的波形显示功算法,是类借鉴生物界的进化规则适者生存,优胜劣汰遗传机制演化而来的种全局自适应优化概率搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖交叉和基因突变现象,在每次迭代中都保留组候选解,并按照些指标从解群中选取较优的个体,利用遗传算子选择交叉和变异对这些个体进行组合,产生新代的候选解群,重复此过程,直到选出满足些收敛指标为止。用遗传算法优化平滑参数的步骤为定义规模为的初始种群根据缺交叉预测的方法,分别计算每个个体的适应度根据得到的适应度,保留若干个适应度大的优良个体④执行选择交换变异操作,生成新代种群判断是否满足终止条件,若是,求出最优解若否,返回至步骤。终止条件可以设置成连续进化几代后,最优值仍然保持不变,或已经达到最大进化代数。最终,经过遗传算法优化,得到最优值。图遗传算法的运算流程基于神经网络的风功率预测建模方法问题描述我国的风电开发已具有相当规模,为保证风电并网后电网安全可靠运行,电网企业作为风电的实际调度主体,熟悉大范围内风电运行特性,应充分发挥自身优势,参与风电功率预测系统的开发建设工作,不断完善风电功率预测系统的功能,并且根据我国实际特点,电网企业能够有条件制定适应我国风电开发特点的风电功率预测执行规范。风电场功率预测是指风电场经营企业根据气象条件统计规律等技术和手段,提前对定运行时间内风电场发电有功功率进行分析预报,向电网调度机构提交预报结果,提高风电场与电力系统协调运行的能力。根据电力调度部门安排运行方式的不同需求,风电功率预测分为日前预测和实时预测。日前预测是预测明日小时个时点每分钟个时点的风功率数值。实时预测是滚动地预测每个时点未来小时内的个时点每分钟个时点的风功率数值。按预测时间的不同又可分为长期预测中期预测短期预测超短期预测。其中超短期预测是提前几个小时或几十分钟预测。本例预于均值聚类法,直到时停止训练。各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展系数。,则扩展系数取,为重叠系数。混合学习过程的第二步是用有监督学习算法得到输出层的权值,常采用算法,下节中有所说明。有监督学习选取中心及网络设计关于数据中心的监督学习算法,最般的情况是对输出层各权向量赋小随机数并进行归化处理隐节点函数的中心,扩展系数和输出层权值均采用监督学习算法进行训练,所有参数都经历个误差修正学习过程。以单输出网络为例,采用梯度下降算法。定义目标函数为式中,为训练样本数,为输入第个样本时的误差信号。定义为,式中输出函数忽略了阈值。为使目标函数最小化,各参数修正量应与其负梯度成正比,经推到得计算式为隐单元中心调整函数宽度扩展系数调整输出单元的权值更新上述目标函数是所有训练样本引起的误差的总和,导出的参数修正公式是种批处理式调整。其他方法试验法令扩展参数以增量在定范围,内递增变化,在学习样本中,采用的数据作为训练样本数据,对网络进行训练。然后用训练出的网络对另外为检验样本数据进行预测,最后得出预测值与样本之间的误差矩阵,用式作为评价网络性能的指
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 51 页
第 2 页 / 共 51 页
第 3 页 / 共 51 页
第 4 页 / 共 51 页
第 5 页 / 共 51 页
第 6 页 / 共 51 页
第 7 页 / 共 51 页
第 8 页 / 共 51 页
第 9 页 / 共 51 页
第 10 页 / 共 51 页
第 11 页 / 共 51 页
第 12 页 / 共 51 页
第 13 页 / 共 51 页
第 14 页 / 共 51 页
第 15 页 / 共 51 页
预览结束,还剩
36 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。