天华表示诚挚的谢意。值此论文完成之际,谨向所有曾为我帮助和指导老师同学和朋友们致以中心的感谢,附录附录附录速性能上有其独特的优点。因为鼠笼式电动机在般情况下是不能调速的,更不能无级调速,因此,对调速要求高的设备,均采用直流电动机。这是因为直流电动机能无级调速,机械传动机构比较简单。由直流电动机的转速公式可知,和中的任意个值,都可使转速改变,改变电枢电路中外电阻的方法也可进行调速。但其缺点是耗电多,电机机械特性软,调速范围小,且只能进行有级调速,故这种方法目前已较少采用。现常用的对直流电动机调速的方法有调磁法和调压法。调磁法即改变磁通量。当保持电源电压为额定值时,调节,改变励磁电流以改变磁通量,如图所示。由于可知磁通减少时,升高,转速降增大,但后者与成反比,所以磁通愈小,机械特性曲线愈陡,但仍具有定硬度,如图所示。在定负载下,愈小,则愈高。由于电动机在额状态运行时,它的磁路已接近饱和,所以通常都是减小磁通,将转速往上调。调速的过程是当电压保持恒定时,减小磁通。由于机械惯性,转速产立即发生变化,于是反电动势就减小,随之增加。由于增加的影响超过减小的影响,所以转矩也就增加。如果阻转矩未变,则转速上升。随着的升高,反电动势增大,和也着减小,直到时为止。但这时转速已比原来升高了。必须指出,若电动机在额定状态下运行,则电枢电流为额定值,如果调速时负载转矩仍旧保持不变为额定值,由于,故减小磁通量后必然超过额定值,因此调速后负载转矩必须减小。这种调速方法适用于转矩与转速成反比而输出功率基本不变恒功率调速的场合。这种调速方法有个优点调速平滑,可无级调速调速经济,控制方便机械特性较硬,稳定性较好。这种调速方法的局限是转速只能升高,即调速后的转速要超过额定转速。因为电机不允许超速太多,因此限制了它的调速范围。在实际工作中,这种方法常作为电压调速的种补充手段。调压法即改变电压。当保持他励电动机的励磁电流为额开始,线圈接在最右边线圈右边不允许再有触点。线圈不能直接接在左边的母线上。在个程序中,同编号的线圈如果使用两次,称为双线圈输出,他很容易引起误操作,应避免。在梯形图中没有真实的电流流动,为了便于分析的周期扫描原理和逻辑上的因果关系,假定在梯形图中有电流流动,这个电流只能在梯形图中单向流动即从左向右流动,层次的改变只能从上向下流动。无论选用何种机型,所使用的软件编号即地址必须在该机型的有效范围以内。根据以上规则和的编程方法和思路编写了本课题设计的自动门控制系统的梯形图程序,具体程序如下程序调试硬件线路连接图接线图采用实验室可编程控制器试验台,主机,其供电电压均为直流。调试过程的电路图如所示在模拟调试过程中,因于实验条件有限,所以微波探测信号与限位开关动作均由按钮代替即,均接按钮。用中间继电器代替,其线圈电压为。联机调试按图连接线路,接电源将在开发平台编写好的软件通过电缆下载到中。运行过程实验按启动按钮手动开关现象当按手动开关按钮时,电动机正转现象二当按手动开关按钮时,电动机反转定值时,降低电枢电压,则由可见,变低了,但未改变。因此改变可得出组平行的机械特性曲线。在定负载下,愈低,则愈低。由于改变电枢电压只能向小于电动机额定电压的方向改变,所以转速将下调。调速的过程是当磁通保持不变时,减小电压由于转速不立即发生变化,反电动势便暂不变化,于是电流减小,转矩也减小。如果阻转矩未变,则,转速下降。随着的降低,反电动势减小,和增大,直到时为止。但这时转速已比原来降低了。由于调速时磁通不变,如在定的额定电流下调速,则电动机的输出转矩便是定的恒转矩调速。这种调速方法有下列优点机械特性较硬,并且电压降低后硬度不变,稳定性较好调速幅度大可均匀调节电枢电压得到平滑的无级调速。这种调速方法的缺点是调压需用专门的设备,投资较高。近年来由于采用了可控硅整流电源对电动机进行调压和调速,使这种方法得到了广泛应用。印刷设备中直流电动机的调速多采用这种方法。直流电动机的优势因为直流电动机在调方面很简单,相对于异步电动机来说又有以下的优势由于采用高性能永磁材料,无刷直流电机的转子尺寸得以减小,可以具有较低的惯性更快的响应速度更高的转矩惯量比。由于没用转子损耗转子使用永磁材料,也无需定子励磁电流分量应用新理论,所以无刷直流电机具有较高的效率和功率密度。对于同等容量输出,交流异步电机需要更大功率的整流器和逆变器。由于没有转子发热,无刷直流电机也无需考虑转子冷却问题。交流异步电机由于其非线性本质,实现控制极为复杂。无刷直流电机把其复杂的磁场定向控制简化为离散状态的转子位置控制,无需坐标变换,调速范围更宽,控制性能更好。综上所述,无刷直流电机具有更大的功率密度铁芯利用率高更高的效率和更好的控制性能,如将节能因素省却变频器以及产能提高因素考虑在内,使用者的综合成本下降很大。所以在本课题设计中选用了无刷直流电动机接触器电磁阀电动机指示灯等分别列出,按被采用的型号内部逻辑元件编号范围,对端子做出相应的分配和安排。根据控制流程图,有规律的分配和利用内部有关的逻辑元件如辅助继电器定时器计数器等构成相应的基本回路。以梯形图的形式来描述控制要求,绘制梯形图要遵循编程原则。编写程序清单时,必须按梯形图的逻辑行和逻辑单元的编排顺序由上而下,从左到右依次进行。本系统的程序软件采用西门子公司设计开发的,选择他的梯形图语言进行程序设计。在设计过程中应遵循以下编程规则每个继电器的线圈和他的触点均用同个编号,每个元件的触点使用时没有数量限制。梯形图每行都是从左边多为人处世的道理,这些道理将对我以后的人起到很好的指导作用。通过对自动门控制系统的软件设计,在学习与设计过程中,了解所设计工程的工艺流程,从而完成了对自动门系统的软件设计,同时,对于自动门硬件,也知道了些周边技术,扩充了知识面,增强对工艺的理解。本文的构思规划设计撰写得到了刘天华老师的悉心指导,在论文设计时给予热心的指导以帮助,他学识渊博敏锐的学术洞察力认真的工作态度和严谨的治学作风平易近人的为人风格给予我深刻的印象,是我受益匪浅在此向刘自动数器电路异步通讯电路总线收发器以及高速的可编程静态和大容量的程序存储器等。伺服驱动器通过采用磁场定向的控制原理和坐标变换,实现矢量控制,同时结合正弦波脉宽调制控制模式对电机进行控制。永磁同步电动机的矢量控制般通过检测或估计电机转子磁通的位置及幅值来控制定子电流或电压,这样,电机的转矩便只和磁通电流有关,与直流电机的控制方法相似,可以得到很高的控制性能。对于永磁同步电机,转子磁通位置与转子机械位置相同,这样通过检测转子的实际位置就可以得知电机转子的磁通位置,从而使永磁同步电机的矢量控制比起异步电机的矢量控制有所简化。伺服驱动器控制交流永磁伺服电机伺服驱动器在控制交流永磁伺服电机时,可分别工作在电流转矩速度位置控制方式下。系统的控制结构框图如图所示由于交流永磁伺服电机采用的是永久磁铁励磁,其磁场可以视为是恒定同时交流永磁伺服电机的电机转速就是同步转速,即其转差为零。这些条件使得交流伺服驱动器在驱动交流永磁伺服电机时的数学模型的复杂程度得以大大的降低。从图可以看出,系统是基于测量电机的两相电流反馈和电机位置。将测得的相电流结合位置信息,经坐标变化从坐标系转换到转子,坐标系,得到分量,分别进入各自得电流调节器。电流调节器的输出经过反向坐标变化从,坐标系转换到坐标系,得到三相电压指令。控制芯片通过这三相电压指令,经过反向延时后,得到路波输出到功率器件,控制电机运行。系统在不同指令输入方式下,指令和反馈通过相应的控制调节器,得到下级的参考指令。在电流环中轴的转矩电流分量是速度控制调节器的输出或外部给定。而般情况下,磁通分量为零,但是当速度大于限定值时,可以通过弱磁,得到更高的速度值。图系统控制结构从坐标系转换到,坐标系有克拉克和帕克变换来是实现从,坐标系转换到坐标系是有克拉克和帕克的逆变换来是实现的。第四章变频器的选择变频技术是应交流电机无级调速的需要而诞生的。世纪年代以后,电力电子器件经历了晶闸管门极可关断晶闸管双极型功率晶体管金属氧化物场效应管静电感应晶体管静电感应晶闸管控制晶体管控制晶闸管绝缘栅双极型晶体管耐高压绝缘栅双极型晶闸管的发展过程,器件的更新促进了电力电子变换技术的不断发展。世纪年代开始,脉宽调制变压变频调速研究引起了人们的高度重视。世纪年代,作为变频技术核心的模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波模式效果最佳。世纪年代后半期开始,美日德英等发达国家的变频器已投入市场并获得了广泛应用。变频器的构成异步电动机用变频器调速运转时的结构图如图所示。通常由变频器主电路或做逆变元件给异步电动机提供调压调频电源。此电源输出的电压或电源及频率,由控制回路指令进行控制。而控制指令则根据外部的运转指令进行运算获得。对于需要精密速度或快速响应的场合,运算还应包含由变频器主电路和传动系统检测出来的信号和保护电路信号,即防止因变频器主电路的过电压,过电流引起的损坏外就,还应保护异步电动机及传动系统等。图变频器的构成图典型的电压型逆变器例主电路天华表示诚挚的谢意。值此论文完成之际,谨向所有曾为我帮助和指导老师同学和朋友们致以中心的感谢,附录附录附录速性能上有其独特的优点。因为鼠笼式电动机在般情况下是不能调速的,更不能无级调速,因此,对调速要求高的设备,均采用直流电动机。这是因为直流电动机能无级调速,机械传动机构比较简单。由直流电动机的转速公式可知,和中的任意个值,都可使转速改变,改变电枢电路中外电阻的方法也可进行调速。但其缺点是耗电多,电机机械特性软,调速范围小,且只能进行有级调速,故这种方法目前已较少采用。现常用的对直流电动机调速的方法有调磁法和调压法。调磁法即改变磁通量。当保持电源电压为额定值时,调节,改变励磁电流以改变磁通量,如图所示。由于可知磁通减少时,升高,转速降增大,但后者与成反比,所以磁通愈小,机械特性曲线愈陡,但仍具有定硬度,如图所示。在定负载下,愈小,则愈高。由于电动机在额状态运行时,它的磁路已接近饱和,所以通常都是减小磁通,将转速往上调。调速的过程是当电压保持恒定时,减小磁通。由于机械惯性,转速产立即发生变化,于是反电动势就减小,随之增加。由于增加的影响超过减小的影响,所以转矩也就增加。如果阻转矩未变,则转速上升。随着的升高,反电动势增大,和也着减小,直到时为止。但这时转速已比原来升高了。必须指出,若电动机在额定状态下运行,则电枢电流为额定值,如果调速时负载转矩仍旧保持不变为额定值,由于,故减小磁通量后必然超过额定值,因此调速后负载转矩必须减小。这种调速方法适用于转矩与转速成反比而输出功率基本不变恒功率调速的场合。这种调速方法有个优点调速平滑,可无级调速调速经济,控制方便机械特性较硬,稳定性较好。这种调速方法的局限是转速只能升高,即调速后的转速要超过额定转速。因为电机不允许超速太多,因此限制了它的调速范围。在实际工作中,这种方法常作为电压调速的种补充手段。调压法即改变电压。当保持他励电动机的励磁电流为额开始,线圈接在最右边线圈右边不允许再有触点。线圈不能直接接在左边的母线上。在个程序中,同编号的线圈如果使用两次,称为双线圈输出,他很容易引起误操作,应避免。在梯形图中没有真实的电流流动,为了便于分析的周期扫描原理和逻辑上的因果关系,假定在梯形图中有电流流动,这个电流只能在梯形图中单向流动即从左向右流动,层次的改变只能从上向下流动。无论选用何种机型,所使用的软件编号即地址必须在该机型的有效范围以内。根据以上规则和的编程方法和思路编写了本课题设计的自动门控制系统的梯形图程序,具体程序如下程序调试硬件线路连接图接线图采用实验室可编程控制器试验台,主机,其供电电压均为直流。调试过程的电路图如所示在模拟调试过程中,因于实验条件有限,所以微波探测信号与限位开关动作均由按钮代替即,均接按钮。用中间继电器代替,其线圈电压为。联机调试按图连接线路,接电源将在开发平台编写好的软件通过电缆下载到中。运行过程实验按启动按钮手动开关现象当按手动开关按钮时,电动机正转现象二当按手动开关按钮时,电动机反转
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 82 页
第 2 页 / 共 82 页
第 3 页 / 共 82 页
第 4 页 / 共 82 页
第 5 页 / 共 82 页
第 6 页 / 共 82 页
第 7 页 / 共 82 页
第 8 页 / 共 82 页
第 9 页 / 共 82 页
第 10 页 / 共 82 页
第 11 页 / 共 82 页
第 12 页 / 共 82 页
第 13 页 / 共 82 页
第 14 页 / 共 82 页
第 15 页 / 共 82 页
预览结束,还剩
67 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。