具体可以写成推广二我们可以用同样方法得到四项次幂的计算方法推广三当指数为负数时也成立。例若的展开式为,求的值年全国高中数学联赛题解令时,可以得到,令时,可以得到,,其中,则,且令时,可以得到,由以上三式相加可得到,所以。例求展开式中含项的系数。解令,则,由题目得,,得所以含项的系数为。例已知,求。解因为,则,又,所以,所以。数学思想在二项式定理中的运用二项式定理的重点是它的展开式和性质,求二项式展开式中的特定项及系数,般用的都是二项展开式的通项公式,然而在实际解题中并不是这样的,有时需要运用些数学思想才可以求解,下面就介绍两种数学思想方法在解题中的运用,种是赋值法,另种是构造法。赋值法在二项式定理中是任意的,,所以在解题时需要对,进行适当的赋值来求二项式中系数和问题。例已知,求的值。解令,可得,令,可得,所以。小结赋值法般都是根据题目要求,取些特殊值如等。当取值时可以取个或多个,同时解题时要注意避免漏项等情况。构造法二项式定理是恒等式,且定理中的系数是组合数,所以解决有关组合数或者组合恒等式的问题时,常用构造法。例已知的展开式中含项的系数为,求展开式中含项的系数的最小值。解由题目可得,所以,设的含的系数为,则又,可得,所以即时此时,所以当时,时,中含项的系数的最小值为。小结这样的题目就是根据题目中式子特征,巧妙地构造二项式函数等来求解。参考文献华东师范大学数学系数学分析北京高等教育出版社王王庆瑞等。组合数学理论与解题上海科学技术文献出版社张尊好张端平。源于二项式定理的类探索性问题中学数学杂志二项式定理的应用杨君河北武邑中学浅谈二项式定理的应用呼伦贝尔学院学报第卷第期宋丽萍张圣管二项式定理的另类用途中学生百科全书年期求值例求的值。解原式例求的值。解,所以注意提取公因式,并适当的合并。求系数和例若,求的值。解因为令,有,令,有。所以原式例已知,求的值。解令,可得又令,可得,所以原式为。注意会观察式子,看适合代入的数。整除问题例求证能被整除。证明因为又因为所以能被整除。例证明能被整除。证由于各项都能被整除,所以能被整除注意在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情景上来,变形要有定的目的性,要凑出相关的因数。近似计算例求的计算结果精确到的近似值。解例求的近似值,误差小于。解,化简得故命题得证。小结利用求和方法证明组合等式是种常见的方法,常用到下面的等式求探索性问题例是否存在个等比数列,对所有的自然数,都有。证当时,命题显然成立,假设时命题成立,,当,,所以当时成立。所以,对所有的自然数成立,即存在等比数列,使。小结在数学中,要研究知识点的内在联系,不仅要会做题,还要知道做题的技巧,用简单的方法解题,这样才能化复杂为简单,才会有好的效果,也提高了做题效率。二项式定理与排列组合数二项式定理排列从个不同的元素中任取个元素,按照定顺序排列成列,叫做从个不同元素中取出个元素的个排列。组合从个不同的元素中任取个元素组合成组,叫做从个不同元素中取出个元素的个组合。从它们的定义看,它们有着密切的联系。排列组合和二项式定理是高中数学中相对独立的部分,排列组合的知识为概率论和统计中的计数提供了方法,而二项式定理又为排列组合提供了计算的方法和原理,在排列组合中往往使用捆绑法解题,这时我们就用到了二项式定理。在证明中我们可以用二项式定理来证明排列组合,反过来我们也可以用排列组合来证明二项式定理。从运用上看,它们更是分不开了。下面通过几个例子来说明它们密切不分的关系。例人并排站成行,甲乙两人必须不相邻,则有多少种排法解该题把甲乙放在起,把另外人放起,除甲乙外个人排列数,此时就有个空位,我们把甲乙插入个空位有种,所以不同的排法种数是种。例有甲乙丙三项任务,甲需个人承担,乙丙各需个人承担,从个人中选个人承担这三项任务,问有多少种选法解先从个人中选出个人承担甲项任务,在把剩下八个人看
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 19 页
第 2 页 / 共 19 页
第 3 页 / 共 19 页
第 4 页 / 共 19 页
第 5 页 / 共 19 页
第 6 页 / 共 19 页
第 7 页 / 共 19 页
第 8 页 / 共 19 页
第 9 页 / 共 19 页
第 10 页 / 共 19 页
第 11 页 / 共 19 页
第 12 页 / 共 19 页
第 13 页 / 共 19 页
第 14 页 / 共 19 页
第 15 页 / 共 19 页
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。