英浓度之间存在着密切的关系,结果显示烟气驻留时间增加,二噁英浓度可以减少。该措施可以使垃圾焚烧所产生的有机气体二噁英有机前体物在高温区进步彻底氧化分解,避免有机前体物进入低温烟气段,可以有效地控制二噁英的后续形成。抑制二噁英污染的其它手段除上述污染抑制技术外,以下的些方法对于有效抑制二噁英的形成与排放也是极为有效的垃圾入炉前的分选。在垃圾分选过程中,尽量将聚氯乙烯等含氯物质以及金属物质选出,避免其入炉,不仅具有资源回收的意义,对于定程度上抑制二噁英的生成也是重要的措施之。尾气净化过程中添加飞灰或活性炭。其目的在于利用飞灰或活性炭对固态二噁英的吸附作用,降低二噁英污染物向大气环境的排放。快速烟气冷却技术。采用快速烟气冷却技术如喷雾干燥技术的关键在于促使较高温度下的二噁英气体快速冷凝为固体颗粒物,从而在后续净化工艺中极易被捕获掉。二噁英催化降解技术。随着垃圾焚烧污染物排放标准的日益严格,越来越要求对焚烧烟气进行特殊的催化处理,包括将二噁英在内的有机污染物彻底催化降解,从而达到烟气无害排放的目标。二噁英的有效控制方法通过二噁英产生条件和机理可以分析出,城市垃圾焚烧产生二噁英控制般可以从源头控制炉内控制及产物控制三方面入手。源头控制从源头控制就是对现对城市垃圾进行预处理,有效减少二噁英的产出。可提高垃圾的热值,以保证垃圾在炉内能充分稳定地燃烧这特别适合我国垃圾热值低的国情通过分类收集或预分拣控制生活垃圾中氯和重金属含量高主要是可以防止铜铁等二噁英生成反应的催化剂入炉的物质进入垃圾焚烧厂。对城市生活垃圾充分破碎,增加垃圾触氧面积,便于垃圾充分燃烧。采用高硫煤与城市生活垃圾混烧的办法,控制好燃烧条件,通过煤中的硫抑制二噁英的产生。焚烧时二噁英的控制焚烧炉影响经查有关材料统能以氯代和二氯代二噁英为单碳源和能源生长并使其降解。个菌株基本不能降解三氯代二噁英,但是,有邻二氯苯作为处级营养共代谢物可增强菌株对高氯代二噁英的降解能力。些真菌可降解二噁英。等用株从天然样品中分离筛选的真菌菌株,和两种白腐菌降解三氯二苯并呋喃的加入浓度分别为和,培养和,降解率达到。降解二苯并呋喃的加入浓度分别为和,培养和的比率达到五株真菌对这两种毒物的降解率随菌株的不同毒物的起始浓度和培养时间而异。超声波分解法日本大学工学系前田昭泰教授成功开发出超声波分解水中二噁英和多氯联苯等有害有机氯化物的新技术。前田发现二噁英氯氟烃等有机氯化物与水的亲和性很差,当用超声波在水中产生细小气泡后,这些物质就被吸附在气泡上,气泡破裂时,依靠产生的高温高压,这些有害物质被分解成无害的碳酸气和氯化物离子。前田等对浓度为的溶液加以千赫的超声波,经分钟后,的被分解了,对二噁英和氯氟烃的效果基本相同。除以上方法外,降解二噁英还有气相氢气还原法,超临界水氧化分解法金属钠分散法等。结论综上所述,生活垃圾焚烧产生的二噁英已经引起了人类的关注,不仅对环境有影响,最重要的是危害到人类的生命健康。因此结合当今国情及实际情况来讲有效减少二英多氯联苯化学进展施敏芳邵开忠垃圾焚烧烟气净化和二噁英污染物的控制技术湖北省环境监测中心站环境科学与技术韦平英侯美珍莫德清环境中二噁英及其控制降解技术环境科学动态梁诗雅城市生活垃圾焚烧产生二噁英排放番禺区环境监测站广东化工,成相对较少量的。专家们发现,硫分的抑制作用在于其能与氯原子发生反应。研究成果证实了的两种抑制机制降低的催化活性硫分通过与反应生成消耗了氯源。该反应中的转化为可以定程度上减弱芳香族化合物的氯代作用,从而减少形成的前体物的数量。第二个可能的反应是与催化剂之间的反应该反应改变了催化产生的反应活性,相对减少了形成二噁英所需的氯源。第三种可能性是通过形成磺酸盐酚的前体物,从而降低了的形成量,或者通过形成的含化合物联苯并噻蒽或联苯并噻吩来减少的生成量。添加碱性氧化物抑制二噁英的形成炉内喷钙净化工艺中不仅对的脱除有利,而且对二噁英的生成也具有重要的抑制作用。添加石灰石和氧化钙可以通过对的吸收来阻止的进步分解,从而有效地降低氯源。炉内喷氨也能起到类似作用。另外,垃圾循环流化床焚烧技术利用飞灰等碱性氧化物的再循环,也可以很大程度上抑制二噁英的形成。因为些化合物可以强烈吸附在飞灰等碱性氧化物表面的活性反应位上,与金属催化剂形成稳定的惰性化合物,从而减弱或消除了金属及其氧化物催化形成二噁英的几率与活性。氨基乙醇等胺类化合物也可以很好地阻碍飞灰活性位的反应,反应机理可能是通过形成的氮化物来实现。此外,带有孤对电子的分子,如含有氮或硫的分子,也可与及其它过渡金属反应形成稳定的化合物,从而降低通过催化形成二噁英的可能性。因此,在燃烧炉内添加多种碱性化合物,可以定程度抑制的形成与排放。袋式除尘器有利于抑制二噁英的环境排放量不同结构的二噁英化合物,其蒸汽压不同。当温度相对较低时,大部分的二噁英将成为固态而容易被捕获。由于静电除尘器的烟气进口温度与出口温度较高,对二噁英的捕集是不利的。目前,普遍认为袋式除尘器对烟气段二噁英的污染控制极为有效。袋式除尘器进口烟温越低,对二噁英的去除率越高。因为当烟温降低,大部分类呈固态而被除尘器收集,只有少部分由于蒸汽压较低而呈气态排出,从而大大降低了二噁英进入环境的数量。因此,垃圾焚烧电厂采用袋式除尘器是较为关键的控制二噁英进步排放的措施,成为必须采取的步骤之。良好的燃烧工况对抑制二噁英在燃烧过程中的形成垃圾焚烧工艺中,抑制二噁英的形成源切断二噁英的形成途径以及采取有效的二噁英净化技术,是最为关键的三个核心问题。总体来讲,垃圾焚烧过程中形成二噁英的必要条件可以归纳为氯源如聚氯乙烯氯气等的存在燃烧过程以及低温烟气段中催化介质如及其金属氧化物的存在不良的燃烧工况组织未采取严格有效的尾气净化措施。垃圾焚烧中的二噁英生成及抑制机理组织炉内燃烧充分的传热与传质过程。其目的在于促使各种垃圾组分所产生的有机气体二噁英有机前体物进行充分的氧化燃烧,削弱炉内的还原性气氛,抑制二噁英物质的合成几率。延长炉内烟气的停留时间。垃圾焚烧炉内烟气驻留时间与二噁噁英精度低温漂的运放。是公司利用各种动态校零技术和工艺制作的斩波稳零式高精度运放,它具有输入偏置电流小失调小增益高共模抑制能力强响应快漂移低性能稳定及价格低廉等优点。有两种封装方式采用个引脚双列直插封装方式和引脚金属壳封装形式下图即是我们本次设计所采用的且是最常用的引脚双列直插式封装的引脚排列方式图的引脚图工作原理利用其动态校零技术消除了器件所固有的失调和漂移现象。因此摆脱了传统斩波稳零电路的束缚,克服了传统斩波稳零放大器的各种缺点。的工作原理如图所示。图放大器的工作原理图如图所示是主放大器。是调零放大器。电路可以通过电子开关的转换来进行两个阶段工作,第个工作是在内部时钟的上半周期。电子开关和导通,此时和是断开的电路处于误差检测和寄存阶段第二是在内部时钟的下半个周期,电子开关和是开通的,和是断开的。电路此时处于动态校零和放大阶段。由于中的运算放大器的增益般设计都是在范围的左右。因此,即使主运放的失调电压达到了,但是整个电路的失调电压也会仅为。正是由于以上两个阶段不断交替进行。电容和将其各自所寄存的上阶段结果送入到运放,的调零端。这使得电路几乎不存在失调和漂移。由此可以知道是种高增益高共模抑制比和具有双端输入功能的运算放大器。的特点具有很低的输入偏置电流开环增益很高均比较高的转换速率④其单位增益带宽可达到左右单位增益达标时其内部具有很多补偿。由于得这些可靠地特性,我们选择将其作为本次设计的放大电路,下图即为本次设计电路的放大部分设计图图连接图蜂鸣器的介绍蜂鸣器是种体化结构的电子讯响器,它采用直流电压供电,根据设计的不同,可以发出不同的声音,在现代的工业设计中它被广泛应用于计算机打印机复印机报警器电子玩具电话机定时器等电子产品中作发声以及报警的器件。蜂鸣器可以分为很多种按结构和工作原理分,蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型按其驱动方式的原理分有源蜂鸣器和无源蜂鸣器按封装的不同分为插针蜂鸣器与贴片式蜂鸣器④按输入电流的不同分为直流蜂鸣器与交流蜂鸣器,其中,以直流最为常见。在选择蜂鸣器时,我们有很多的选择,但是选择时也有定的标准所选的蜂鸣器是有源蜂鸣器的还是无源蜂鸣器,这决定了你是否需要再设计外部驱动电路所选的蜂鸣器是贴片的还是直插的,这决定了你该设计什么样的封装形式所选蜂鸣器所要的工作电压和工作电流,这取决于该部分电路的供电电压和能耗情况所选蜂鸣器的工作温度,这决定了你设计的产品所需要的工作环境所选蜂鸣器的声强级和声音频率,它确定了蜂鸣器所发出的声音和声音的响亮程度。基于本次设计的特点我们采用的是有源压电式蜂鸣器有源蜂鸣器工作时最理想的输入信号是直流信号,通常标识为和等。由于在蜂鸣器的内部具有简单的振荡电路,能将恒定的直流信号直接送人到蜂鸣器中。除此之外由于有源蜂鸣器可以连续不断地发出声音,所以更适合本设计的要求。在图中,接晶体管基极输入端。当输出高电平时,晶体管导通,压电蜂鸣器两端获得约电压而鸣叫当输出低电平时,晶体管截止,蜂鸣器停止发音。图蜂英浓度之间存在着密切的关系,结果显示烟气驻留时间增加,二噁英浓度可以减少。该措施可以使垃圾焚烧所产生的有机气体二噁英有机前体物在高温区进步彻底氧化分解,避免有机前体物进入低温烟气段,可以有效地控制二噁英的后续形成。抑制二噁英污染的其它手段除上述污染抑制技术外,以下的些方法对于有效抑制二噁英的形成与排放也是极为有效的垃圾入炉前的分选。在垃圾分选过程中,尽量将聚氯乙烯等含氯物质以及金属物质选出,避免其入炉,不仅具有资源回收的意义,对于定程度上抑制二噁英的生成也是重要的措施之。尾气净化过程中添加飞灰或活性炭。其目的在于利用飞灰或活性炭对固态二噁英的吸附作用,降低二噁英污染物向大气环境的排放。快速烟气冷却技术。采用快速烟气冷却技术如喷雾干燥技术的关键在于促使较高温度下的二噁英气体快速冷凝为固体颗粒物,从而在后续净化工艺中极易被捕获掉。二噁英催化降解技术。随着垃圾焚烧污染物排放标准的日益严格,越来越要求对焚烧烟气进行特殊的催化处理,包括将二噁英在内的有机污染物彻底催化降解,从而达到烟气无害排放的目标。二噁英的有效控制方法通过二噁英产生条件和机理可以分析出,城市垃圾焚烧产生二噁英控制般可以从源头控制炉内控制及产物控制三方面入手。源头控制从源头控制就是对现对城市垃圾进行预处理,有效减少二噁英的产出。可提高垃圾的热值,以保证垃圾在炉内能充分稳定地燃烧这特别适合我国垃圾热值低的国情通过分类收集或预分拣控制生活垃圾中氯和重金属含量高主要是可以防止铜铁等二噁英生成反应的催化剂入炉的物质进入垃圾焚烧厂。对城市生活垃圾充分破碎,增加垃圾触氧面积,便于垃圾充分燃烧。采用高硫煤与城市生活垃圾混烧的办法,控制好燃烧条件,通过煤中的硫抑制二噁英的产生。焚烧时二噁英的控制焚烧炉影响经查有关材料统能以氯代和二氯代二噁英为单碳源和能源生长并使其降解。个菌株基本不能降解三氯代二噁英,但是,有邻二氯苯作为处级营养共代谢物可增强菌株对高氯代二噁英的降解能力。些真菌可降解二噁英。等用株从天然样品中分离筛选的真菌菌株,和两种白腐菌降解三氯二苯并呋喃的加入浓度分别为和,培养和,降解率达到。降解二苯并呋喃的加入浓度分别为和,培养和的比率达到五株真菌对这两种毒物的降解率随菌株的不同毒物的起始浓度和培养时间而异。超声波分解法日本大学工学系前田昭泰教授成功开发出超声波分解水中二噁英和多氯联苯等有害有机氯化物的新技术。前田发现二噁英氯氟烃等有机氯化物与水的亲和性很差,当用超声波在水中产生细小气泡后,这些物质就被吸附在气泡上,气泡破裂时,依靠产生的高温高压,这些有害物质被分解成无害的碳酸气和氯化物离子。前田等对浓度为的溶液加以千赫的超声波,经分钟后,的被分解了,对二噁英和氯氟烃的效果基本相同。除以上方法外,降解二噁英还有气相氢气还原法,超临界水氧化分解法金属钠分散法等。结论综上所述,生活垃圾焚烧产生的二噁英已经引起了人类的关注,不仅对环境有影响,最重要的是危害到人类的生命健康。因此结合当今国情及实际情况来讲有效减少二