数样设计水池造价最低解设水池地面边的长度为米,水池的总造价为元,根据题意得当,即时,有最小值因此,当水池的底面边长为米的正方形时,水池的总造价最低导数在闭区间的最值例已知函数上的最大值和最小值解,令,得舍去,,所求最小值为,最大值是用线性规划求最值这类问题通常以实际问题为背景,考察运用线性规划的有关知识求目标函数的最值,其解题的般思路是画出可行域,求与最值有关的交点坐标,代入坐标求出最值。例题要将两种大小不同的钢板截成三种规格,每张钢板可同时截得三种规格的小钢板的块数如下规格类型钢板类型规格规格规格第种钢板第二种钢板今需要三种规格的成品,分别块,问这两种钢板多少张可得所需三种规格成品,且使用钢板张数最少解设需要第种钢板张,第二种钢板张,则,注释作者书名出版社名或期刊名出版时间或期刊号页码每项用称号隔开参考文献作者书名出版社名出版时间作者论文名期刊名期刊号出版时间附录后记论文评定表姓名专业名称主考学校准考证号评定项目写作部分答辩总计立论观点组织结构语言表达回答问题表述能力发挥水平得分指导教师评语签名答辩委员会评语答辩委员会组成及签名职称签字职称签字职称签字年月日甘肃省高等教育自学考试本科生毕业论文打印要求本科生毕业论文的纸张统采用纸规格。本科生毕业论文由封面扉页摘要目录正文注释参考文献后记等部分组成。摘要只要中文摘要。论文中级标题用黑色号字,二级题为宋体号字,正文用宋体小号字,行距为固定值。论文篇幅过长时,用正反两面印刷。整理得,解得,将带入原方程得,,故当时,二次函数在闭区间的最值此类型题目的对称轴和区间都是确定的,因而二次函数的最值也是确定的,直接观察二次函数在区间上的图像即可。例已知函数,,,求的最大值和最小值。解对称轴,,由数形结合可知,时,,,。例求函数在区间,的最小值解函数的对称轴是,故函数在区间,上递增函数在区间,上递减当时当时所以,函数在区间,的最小值为第三章高中数学中的最值问题在高中数学中,我们常遇到的最值问题的类型有,三角函数求最值均值不等式导数解析几何中求最值。本章系统详细的总结和归纳函数最值的求法,便于学生掌握。有关三角函数的最值三角函数是数学中重要的函数概念,学习并掌握三角函数知识点对学好数学有着很重要的作用,三角函数和其它数学知识有密切联系,且常常在学和研究其它数学知识有着广泛的应用。三角函数的最值问题是对三角函数的概念图象与性质以及诱导公式同角间的基本关系两角的和与差公式的,当即时利用三角函数的单调性求最值的单调增区间是,,减区间是,。的单调增区间是,,减区间是,。例已知求函数的最小值解,解将看成单位圆上的点,与定点,连线的斜率,将函数的问题转化为斜率的最值,只要求出过定点,且与单位圆相切的直线的斜率即可。设切线方程为,即,则有,均值不等式求最值运用基本不等式求最值是高中阶段种常用的方法,其约束条件苛刻。均值不等式具有将和式转化为积式与将积式转化为和式的功能,但定要注意使用的前提正二定三相等。所谓正是指正数二定指应用定理求最值时,和或积为定值三相等是指综合考查,也是函数思想的具体体现解决三角函数的最值问题可通过适当的三角变换,化归为种三角函数形式,再利用三角函数的有界性去处理,这样就能将复杂的试题转换为我们熟悉的类型,以便于解答。利用三角函数的有界性求最值对于形如或的函数,利用三角函数的有界性,求出或,再利用及,从而求得函数的最值。例求三角函数,的最值解将变形为,,解得,所以函数的最大值为,无最小值。利用换元法求三角函数的最值三角代换也是求最值常用的种换元方法,在解些代数问题时,选用适当的三角函数进行换元,把三角函数问题转化为代数问题,充分利用三角函数的性质去解决问题。对于同时含有与的函数求最值问题,通常用换元法换去低次项,再将函数化为二次函数求最值,在换元过程中要注意换元前后新换元的取值范围例已知,求的最大值解设,则由已知条件得解得应用第章绪论在研究领域现实生活中,我们常会碰到些有关事件的范围问题,也就是事件的最值问题最优化最省等的问题,当然,早学习数学的过程中,我们也常常碰到求函数的最值的求法及技巧。最值问题是中学数学的重要内容之,它分布在各块知识点,考察学生的分类讨论数形结合转化与化归等诸多思想和方法,还可以考察学生的思维能力,实践和创新能力。因此熟练的掌握各类最值的求法及技巧。使学生便于掌握,遇到题目,不慌不忙,提高学生解题能力。在实际应用问题中,关于最优化问题,通过建模可化为最值问题。以便于学生把理论联系实际。在中学数学的学习中,我们常遇到最值问题的类型及解法有,三角函数的有界性换原法运用二倍角公式。数形结合。函数的单调性均值不等式。下面,我根据自己查阅资料和体会,来更好的使学生轻易的掌握最值的求法,我将系统的归纳最值的求法。第章初中数学中的最值问题在初中,对于二次函数的掌握是重点也是中考的考点,在求二次函数的最值方面,利用了二次函数的性质图像单调性判别式法。便于同学们解决二次函数最值方面的问题。有关二次函数的的最值问题用配方法求二次函数的最值问题配方法的般步骤为把二次函数的系数提出来在括号内加上次项系数半的平方,同时减去,以保值不变。例求函数的最小值解显然所以故所求函数的最小值为例由上式可知,当且时,即时,取得最小值用二次函数单调性求二次函数的最值运用二次函数的图像以及基本性质,当时,开口向上,有最小值。反之,时,图像开口向下,有最大值。例已知函,求行定的操作提示。预期效果注册时输入或者密码不致时报错。测试结果都报错。测试结论注册要为未注册过的用户名登录时要填写正确的密码才能进行操作。注册用户成功页面示意图如图所示图注册用户成功页面示意图结论完成这次设计任务总共用了个月的时间,第个月用来收集资料学习要用到的各项开发技术进行旅游网站的分析,第二个月用来设计网站,最后个月用来测试及修改。论文的撰写直贯穿其中。网站实施后,游客可以根据需求进入本网站浏览旅游信息,包括旅游线路信息酒店信息交通线路信息景点景区信息地域信息等。如果游客想成为本网站的用户则注册即可,成为本网站会员后,可以进行或查看给网站的留言。管理员进入本旅游网站后,可以发布相应的旅游信息,所发布的信息是可以由管理员修改和删除的。管理员可以查看到用户的留言并对其进行删除管理。管理员的主要工作是添加旅游地域景点等信息以及管理用户。本网站是个最基本的基于体系结构的旅游信息网站,可扩展性很大,科学的开发过程也极有利于网站的扩充与扩展。网站采用的是数据库。网站的分析与定义都结合了现在流行的面向对象方法以及传统的结构分析与设计方法,网站编码以及测试效率良好。参考文献龙马工作室与动态网页编程完全自学手册郑州人民邮电出版社,王珊数据库系统原理教程北京清华大学出版社周绪中文版入门提高北京清华大学出版社孔鹏动态网站开发完全自学手册北京机械工业出版社魏楠基于旅游网站的设计与实现中国新技术新产品刘好增动态网站开发实践教程北京清华大学出版社,徐国智数据库开发实例精粹北京高等教育出版社社,蒲鹏网络编程基础北京清华大学出版社,王国辉,牛强,李南南,等信息系统开发实例精选北京电子工业出版社,李文才田中雨刘跃军动态网站开发基础教程与实验指导北京清华大学出版社,杨学全实例教程北京电子工业出版社,呈指数级增长。尤其是现在以家庭为单位的团体出游越来越多,这就要求作为个好的旅游资源及线路管理系统要集安全,方便,多样,全面,细致于体。结合旅游网站的发展前景以及现阶段出现的些问题,我们从另外个角度设计了个以旅游客户为主的,能为其提供多种预订功能和浏览服务的旅游资源及线路管理网站。这个网站不仅是现有旅游网站的补充,同时更是对现有网站的个扩展。利用该旅游网站,客户先可以通过对主页面的浏览,对自己所中意的旅游线路,宾馆酒店进行预订,同时还可以对外出旅游所需要的航班信息进行查阅和预订。如果客户对于现行的信息不满意,或者是自己的个方面的要求没有得到应有的满足,可以打开客户留言平台,进行留言。网站的管理人员将会在第时间进行查阅。并做出相应的调整和改善。这样就大大的方便了客户,让他们在正式出门旅游之前得到进步的了解。网站设计思想随着互联网的发展,旅游信息网已经成为必然,尤其在新农村建设中,要发挥好科学的网络作用已是必不可少的。旅游信息网具有浓厚的时代感和现代科技气息,由图像图形文字等多种承载媒体的信息组成,是多种形式结合在起的综合性信息。通常旅游信息网传输的数据量是非常大的,随着代码的增多会使页面臃数样设计水池造价最低解设水池地面边的长度为米,水池的总造价为元,根据题意得当,即时,有最小值因此,当水池的底面边长为米的正方形时,水池的总造价最低导数在闭区间的最值例已知函数上的最大值和最小值解,令,得舍去,,所求最小值为,最大值是用线性规划求最值这类问题通常以实际问题为背景,考察运用线性规划的有关知识求目标函数的最值,其解题的般思路是画出可行域,求与最值有关的交点坐标,代入坐标求出最值。例题要将两种大小不同的钢板截成三种规格,每张钢板可同时截得三种规格的小钢板的块数如下规格类型钢板类型规格规格规格第种钢板第二种钢板今需要三种规格的成品,分别块,问这两种钢板多少张可得所需三种规格成品,且使用钢板张数最少解设需要第种钢板张,第二种钢板张,则,注释作者书名出版社名或期刊名出版时间或期刊号页码每项用称号隔开参考文献作者书名出版社名出版时间作者论文名期刊名期刊号出版时间附录后记论文评定表姓名专业名称主考学校准考证号评定项目写作部分答辩总计立论观点组织结构语言表达回答问题表述能力发挥水平得分指导教师评语签名答辩委员会评语答辩委员会组成及签名职称签字职称签字职称签字年月日甘肃省高等教育自学考试本科生毕业论文打印要求本科生毕业论文的纸张统采用纸规格。本科生毕业论文由封面扉页摘要目录正文注释参考文献后记等部分组成。摘要只要中文摘要。论文中级标题用黑色号字,二级题为宋体号字,正文用宋体小号字,行距为固定值。论文篇幅过长时,用正反两面印刷。整理得,解得,将带入原方程得,,故当时,二次函数在闭区间的最值此类型题目的对称轴和区间都是确定的,因而二次函数的最值也是确定的,直接观察二次函数在区间上的图像即可。例已知函数,,,求的最大值和最小值。解对称轴,,由数形结合可知,时,,,。例求函数在区间,的最小值解函数的对称轴是,故函数在区间,上递增函数在区间,上递减当时当时所以,函数在区间,的最小值为第三章高中数学中的最值问题在高中数学中,我们常遇到的最值问题的类型有,三角函数求最值均值不等式导数解析几何中求最值。本章系统详细的总结和归纳函数最值的求法,便于学生掌握。有关三角函数的最值三角函数是数学中重要的函数概念,学习并掌握三角函数知识点对学好数学有着很重要的作用,三角函数和其它数学知识有密切联系,且常常在学和研究其它数学知识有着广泛的应用。三角函数的最值问题是对三角函数的概念图象与性质以及诱导公式同角间的基本关系两角的和与差公式的,当即时利用三角函数的单调性求最值的单调增区间是,,减区间是,。的单调增区间是,,减区间是,。例已知求函数的最小值解,解将看成单