的帮助,在这里请接受我诚挚的谢意,最后我还要感谢含辛茹苦地培养我长大的父母,谢谢你们,没有你们的支持,就没有今天的我。愿把我的幸福和快乐都送给关心和支持过我的人,也愿他们切如意。组对。组对时,应首先操正组对件的位置,与纵向组对移动轨道相平行,前后偏移不超过。四型钢定位焊接将型钢组对后,要先将其进行定位焊接。定位焊接时应按下述工艺要求进行定位焊高度不得超过焊缝高度设计有坡口时,组对点焊高度不应超过破口尺寸。定位焊,由于焊缝长度短,截面小,冷却快,焊缝容易开裂。应该选择较大的热输入进行定位焊。定位焊间距以为宜,偏差不超过而且两端必须点焊,点焊长度如下严禁在焊缝区外的母材和设备上引弧,在坡口内引弧局部面积不得留下弧坑。五引弧板收弧板的设置在每根型钢组对的同时,为了保证焊缝质量,需在两端设引弧板收弧板,材质要求相同长度为,焊接结束后切割去掉。六腹板厚度小于,宽度大于的反变形处理将面积较大厚度较小腹板放在砧板上用锤击需加垫板,以免锤击出伤痕,这样才能消除切割收缩的压力。第二节型钢自动埋弧焊接工艺及变形控制组对定位完成后即可进行型钢主焊接工艺,主焊接过程主要采用自动埋弧焊方法。自动埋弧焊的焊接参数的确定自动埋弧焊的焊接参数般包括焊接电流电弧电压焊接速度及焊接直径。焊接电流的确定焊接电流主要影响焊缝厚度。其他条件定时,随着电流的增大,电弧力和电弧对焊件的热输入量及焊丝的熔化量增大,熔深将增加。焊缝厚度和余高增加,而焊缝宽度几乎不变,焊缝成形系数减小,焊接电流对焊缝熔深大小影响最大。电弧电压的确定电弧电压主要影响焊缝宽度。其他条件定时,电弧电压低时,熔深大焊缝宽度窄电弧电压高时,熔深浅焊缝宽度增加过分增加电压,会使电弧不稳,熔深减少,易造成未焊透的现象,严重时还会造成咬边气孔等缺陷。焊丝直径的确定在焊接电流电压和速度不变的情况下,焊丝直径将直接影响焊缝的熔深。随着焊丝直等。坡口形状尽量对称为宜,不对称的坡口裂纹敏感性较大。在满足焊缝强度的基本要求下,应尽量减少填充金属的用量。三未熔合未熔合是指焊缝金属与母材金属,或焊缝金属之间未熔化结合在起的缺陷。按其所在部位,未熔合可分为坡口未熔合,层间未熔合根部未熔合三种。产生未熔合缺陷的原因焊接电流过小焊接速度过快焊条角度不对产生了弧偏吹现象焊接处于下坡焊位置,母材未熔化时已被铁水复盖母材表面有污物或氧化物影响熔敷金属与母材间的熔化结合等二未熔合的危害未熔合是种面积型缺陷,坡口未熔合和根部未熔合对承载截面积的减小都非常明显,应力集中也比较严重,其危害性仅次于裂纹。三未熔合的防止采用较大的焊接电流,正确地进行施焊操作,注意坡口部位的清洁三未焊透母材之间或母材与熔敷金属之间存在局部未熔合现象。它般存在于单面焊的焊缝根部,对应力集中很敏感,对强度疲劳等性能影响较大。未焊透产生的原因是坡口设计不良,角度小钝边大间隙小。焊条焊丝角度不正确。电流过小,电压过低,焊速过快,电弧过长,有磁偏吹等。焊件上有厚锈未清除干净。埋弧焊时的焊偏。二未焊透的危径的减少,熔深将加大,成型系数减小。根据焊件的外形和尺寸可选定细丝埋弧焊,还是粗丝埋弧焊。例如小直径圆筒的内外环缝应采用焊丝的细丝埋弧焊厚板深坡口对接街头纵缝和环缝宜采用焊丝的粗丝埋弧焊。焊接速度的确定焊接速度的快慢主要影响母材的热输入量。焊接速度的确定般根据焊接电流的大小来确定,同时兼顾生产效率。如焊接速度增加,焊缝的线能量减少,使熔宽减少熔深增加,然而继续加大焊接速度,反而会使熔深减少,焊接速度过快,电弧对焊件加热不足,使熔合比减少,还会造成咬边未焊透及气孔等缺陷。根据上述焊接参数的确定原则,在大量试焊的基础上得出如下焊接工艺参数二焊接变形的控制自动埋弧焊电流大,热量高,构件易产生变形翼缘板角变形,钢的纵向弯曲,钢扭曲变形。针对上述问题主要采取以下技术措施在专用工作台上,将钢的四条纵向角焊变为船形焊,以保证焊缝的焊透,提高焊接质量,减少熔敷金属。根据翼缘板与腹板的不同配置调整焊接参数,将角变形控制在以内,然后用翼缘矫正机对其进行校正。纵向弯曲是由于型钢单边受热产生的残余应力分布不均造成的。通过实验决定利用后续焊缝的残余应力平衡上道焊缝的残余应力的办法,即第道焊缝焊接时,电流调至下限值,第道焊缝焊接时,电流调至平均值,在最后道焊缝焊接时,将电流调至上限值,以期消除变形。如采用上述措施后仍有少量变形,则在后续工序中用火焰法予以校正。扭曲变形与纵向弯曲产生的原因大致相同,因此,也是通过合理调整焊接顺序,以后续焊缝的残余应力来平衡前面的焊接残余应力。为了减少变形和装配顺序,尽量可采取先组装焊接成小件,并进行矫正,使尽可能消除施焊产生的内应力,再将小件组装成整体构件。三焊接变形矫正在焊接钢生产中对构件变形的校正,主要采用三种方法火焰校正法机械校正法和反变形法。机械校正法主要校正翼缘板的角变形,在专用的翼缘矫正机上,通过机械力进行反复的强制性校正,直到角变形量符合标准为止。火焰校正法主要用于校正钢的纵向弯曲变形,在拱起的侧用火焰加热至,在翼缘板上进行条形加热,在腹板上进行三角形区加热,加热后用冷水进行跟踪冷却。加热时根据不同的变形量,控制用回火处理。这种热处理的效果方面可消除焊接残余应力,另方面使已产生的马氏体高温回火,改善组织。同时接头中的氢可进步逸出,有利于消除氢致裂纹,改善热影响区的延性。改善接头设计,降低焊接接头的拘束应力在焊接接头设计上,应尽可能消除引起应力集中的因素,如避免缺口防止焊缝的分布过分密集伤方法和探伤结果分级法建筑钢结构焊接技术规程致谢本论文是在我的导师和老师的亲切关怀和悉心指导下完成的。他们严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。从课题的选择到论文的最终完成,老师老师和老师都始终给予我细心的指导和不懈的支持。感谢在大学学习期间给我上课的老师们,感谢我认识的兄弟姐妹们。有幸认识你们是我读大学的最大收获在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长同学朋友给了我无言害是为角。所有的物理和力学参数列于表中。表模型材料物理力学参数表在这个工程中,准确的计算上部结构传递给桩上部的荷载非常的重要,它将最终决定桩的轴力和沉降量。工程中采用软件和工程估算法进行这些荷载的计算。由于软件考虑了地震因素和场地的实际状况,因此用软件计算的负载结果比工程估算法稍大点儿。考虑工程的安全性,经过对两种方法计算结果的比较,采用了比较保守的软件计算的结果。另外,还有些关键问题需要解决对复杂地层的准确定义,短开挖的模拟复杂衬砌施工的模拟。随着数值分析软件的发展这些问题都被解决了。些数值模型的信息标注在图中。三维模型网格图隧道模型图数值计算模型结果与讨论很容易知道,隧道对周围岩体不同位置的干扰大小与隧道的开挖方法有关。为了便于分析,隧道周围岩体被分为三个区域,即,第区图隧道截面开挖顺序图数值计算模型为便于问题的分析,计算模型以桩基础作用的地区为中心进行建模。它沿隧道纵向取为,沿隧道横向取为,地表以下为模型的底部边界。根据模型位移边界条件知,侧面水平位移和底部垂直位移是有限制的,模型上表面是自由的。模型的大小与群桩的水平位置之间的关系如图所示。图隧道模型与群桩水平位置大小之间的关系地层的初始应力可以通过如下方式得到第层的垂直应力为其中同时模型的最大土层数是土壤的饱和密度广州的地下水位很浅,是土层的厚度。如果我们假设土层的泊松比为,那么土层的侧压力系数为侧向土压力为在分析中采用准则和大应变模型。屈服函数和塑性应变的函数如下式中,为岩土体的黏聚力,ϕ为土体的内摩擦角,为土体的膨胀角为平均应力,偏应力和桩端总抗力因隧道施工发生复杂变化,从而表现为桩轴力的复杂变化,因而影响到桩基础的承载力。当桩基受扰动较大时,采用地层注浆加固或桩基托换等积极措施来控制桩基承载力和桩体沉降是十分必要的。研究结果对于类似的工程有参考价值。关键字隧道数值模拟桩基础桩承载力桩底段轴力桩侧摩阻力桩端总抗力。引言在城市地铁建设中,往往会遇到地铁隧道从高楼大厦的底部穿过的情况,这样必然会影响到建筑基础的稳定性和完整性,从而影响到高楼大厦的安全与稳定。基于此,对于因地铁施工引起的现存桩基承载力问题必须做出深入研究。为了了解隧道开挖对现存桩基的影响,和已经进行了多次室内研究,与此同时和他的同事曾进行离心试验的探讨。和的研究采用相应的数值模拟分析重点分析了地铁施工对桩的影响,而对本文所研究的问题即埋暗挖地铁隧道近距施工引起的桩基承载力变化规律及相互效应问题的研究涉及很少,而这正是实际工程建设所遇到的急需进行深入研究的难题。个单桩的承载力存在如下关系式中为桩基的承载力,为桩侧土的总摩阻力,为桩端土的总抗力。由公式可以看出,桩基的承载力由桩侧土的总摩阻力和桩端土的总抗力两部分组成。桩是通过桩侧摩阻力和端部抗力把上部荷载传递给地层的。如果隧道在桩基础的附近进行施工,必然会对桩的侧向摩阻力和端部抗力产生影响。因此,研究隧道地铁施工对桩基承载能力的影响和变化规律变得非常重要。我们采用法,针对广州地铁号线的帮助,在这里请接受我诚挚的谢意,最后我还要感谢含辛茹苦地培养我长大的父母,谢谢你们,没有你们的支持,就没有今天的我。愿把我的幸福和快乐都送给关心和支持过我的人,也愿他们切如意。组对。组对时,应首先操正组对件的位置,与纵向组对移动轨道相平行,前后偏移不超过。四型钢定位焊接将型钢组对后,要先将其进行定位焊接。定位焊接时应按下述工艺要求进行定位焊高度不得超过焊缝高度设计有坡口时,组对点焊高度不应超过破口尺寸。定位焊,由于焊缝长度短,截面小,冷却快,焊缝容易开裂。应该选择较大的热输入进行定位焊。定位焊间距以为宜,偏差不超过而且两端必须点焊,点焊长度如下严禁在焊缝区外的母材和设备上引弧,在坡口内引弧局部面积不得留下弧坑。五引弧板收弧板的设置在每根型钢组对的同时,为了保证焊缝质量,需在两端设引弧板收弧板,材质要求相同长度为,焊接结束后切割去掉。六腹板厚度小于,宽度大于的反变形处理将面积较大厚度较小腹板放在砧板上用锤击需加垫板,以免锤击出伤痕,这样才能消除切割收缩的压力。第二节型钢自动埋弧焊接工艺及变形控制组对定位完成后即可进行型钢主焊接工艺,主焊接过程主要采用自动埋弧焊方法。自动埋弧焊的焊接参数的确定自动埋弧焊的焊接参数般包括焊接电流电弧电压焊接速度及焊接直径。焊接电流的确定焊接电流主要影响焊缝厚度。其他条件定时,随着电流的增大,电弧力和电弧对焊件的热输入量及焊丝的熔化量增大,熔深将增加。焊缝厚度和余高增加,而焊缝宽度几乎不变,焊缝成形系数减小,焊接电流对焊缝熔深大小影响最大。电弧电压的确定电弧电压主要影响焊缝宽度。其他条件定时,电弧电压低时,熔深大焊缝宽度窄电弧电压高时,熔深浅焊缝宽度增加过分增加电压,会使电弧不稳,熔深减少,易造成未焊透的现象,严重时还会造成咬边气孔等缺陷。焊丝直径的确定在焊接电流电压和速度不变的情况下,焊丝直径将直接影响焊缝的熔深。随着焊丝直等。坡口形状尽量对称为宜,不对称的坡口裂纹敏感性较大。在满足焊缝强度的基本要求下,应尽量减少填充金属的用量。三未熔合未熔合是指焊缝金属与母材金属,或焊缝金属之间未熔化结合在起的缺陷。按其所在部位,未熔合可分为坡口未熔合,层间未熔合根部未熔合三种。产生未熔合缺陷的原因焊接电流过小焊接速度过快焊条角度不对产生了弧偏吹现象焊接处于下坡焊位置,母材未熔化时已被铁水复盖母材表面有污物或氧化物影响熔敷金属与母材间的熔化结合等二未熔合的危害未熔合是种面积型缺陷,坡口未熔合和根部未熔合对承载截面积的减小都非常明显,应力集中也比较严重,其危害性仅次于裂纹。三未熔合的防止采用较大的焊接电流,正确地进行施焊操作,注意坡口部位的清洁三未焊透母材之间或母材与熔敷金属之间存在局部未熔合现象。它般存在于单面焊的焊缝根部,对应力集中很敏感,对强度疲劳等性能影响较大。未焊透产生的原因是坡口设计不良,角度小钝边大间隙小。焊条焊丝角度不正确。电流过小,电压过低,焊速过快,电弧过长,有磁偏吹等。焊件上有厚锈未清除干净。埋弧焊时的焊偏。二未焊透的