索而连接形成的空间受力体系,适用于圆形平面或椭圆形平面的屋盖结构。张弦梁结构的找形分析张弦梁结构的形态定义张弦梁结构象悬索结构等柔性结构样,根据张弦梁结构的加工施工及受力特点。通常也将其结构形态定义为零状态初始态和荷载态。零状态,是拉索张拉前的状态,实际上是构件加工和放样形态,通常也叫结构放样态。初始态,是拉索张拉完毕后,结构安装就位的形态,通常也叫预应力状态。初始态是建筑施工图中明确的结构外形。包括在自重作用下荷载态,是外荷载作用在初始态结构上发生变形后大平衡态。如果张弦梁结构的上弦构件按照初始形态给定的几何参数进行加工放样,那么在张拉拉索时,由于上弦构件刚度较弱,拉索的张拉势必会引导撑杆使上弦构件产生向上的变形,当张拉完毕后,结构上弦构件的形状将偏离初始形态,从而不满足建筑设计的要求。因此,张弦梁结构上弦构件的加工放样通常要考虑张拉产生的变形影响,这也是张弦梁结构需要进行形态定义的原因。张弦梁结构找形分析目前有关文献中找形的方法不外乎有张其林提出的逆迭代法文献中改进的逆迭代法。逆迭代法的简介逆迭代法实际上是种非常自然的思路既然设计蓝图上的张弦梁几何尺寸是初状态预应力张拉完毕时结构的状态的尺寸,那么就可以以此初状态尺寸为近似零状态尺寸建立有限元模型,然后对其施加预应力预应力值按设计要求进行张拉,得到近似初状态。然后将此近似初状态的几何尺寸与设计图中真正的初状态的几何尺寸的差值反向增加到原有限元模型的节点坐标上,作为近似初状态重新建模,并再次进行张拉,如此循环迭代,直到近似初状态与初状态的坐标差值足够小,即可视此近似初状态为初状态,而由之张拉而来的近似零状态为要求的零状态。如此既可得到零状态几何尺寸施工人员据此放样,又可得到初状态的内力应力分布,从而完成找形工作。实践证明,只需进行次数不多的迭代,就可达到足够的找形计算精度。改进的逆迭代法上面提到的逆迭代法是将端部索段断开释放该处屋架上下弦的水平约束,并将该索段的预拉力的水平分量作为外力分别反向作用在屋架上下弦端部,进而步步逆迭代计算。这种处理方法固然可以求出零状态的几何参数和初始态预应力分布,但是如果要在此基础上继续进行荷载态的分析,则举步维艰。因为索切断之后的结构已经转化为静定结构,在这个静定结构上加载分析显然不能反映原先结构的受力特性,特别是此时下弦索内力已不会再随荷载的变化而变化,失去了其原有的作用。改进的逆迭代法,不是把索段用力张拉来实现,而是在索段中施加定大小的初应变,使其在变形协调后该索段的内力等于预定值,通过这样的改变使得研究问题可以在此基础上连续进行承受外荷载作用下的分析。从而弥补了以往预应力张弦梁结构的力学性能研究中未能考虑受力状态改变的缺陷。具体迭代过程如下假定图纸给定的结构初始态坐标表示为,经过第次迭代后所得的零状态几何坐标为初始态坐标为,位移为。首先假设当前的几何即为零状态几何,即令。在些索段加上初应变预估,对几何为的结构计算得位移,计算,令。判别是否满足给定的精度。若满足,则即为所求的零状态几何坐标若不满足,则令,转第二步,并令。由以上步骤得出零状态的几何参数后,将初应变值赋予该索段求出平衡后所得到的状态即为初始态预应力分布。此时,应当检验该索段的内力值是否为预定值,如果不是,则应当调整初应变值从步骤重新计算。单榀张弦梁结构性能各影响因素分析对单榀张弦梁结构性能各影响因素分析的研究现状文献通过对撑杆数目垂跨比高跨比梁的截面特性和弦的预应力等参数对单棍张弦梁结构静力性能的影响进行分析,得出以下结论撑杆数目通过撑杆连接拱和弦的张弦梁结构,受力合理。但是撑杆数目的增加并不能改善结构的受力性能,文献以跨度为的单榻张弦梁为例进行分析,认为该情况下撑杆数超过个后,受力性能改善效果不再明显,所以撑杆数目以个为益。垂跨比或高跨比的影响垂跨比是下弦索的垂度和结构跨度的比值价,高跨比是上弦梁的矢高和结构跨度的比值切。随着垂跨比或高跨比的增大,除剪力外,其它内力如梁的弯矩和轴力以及索的最大应力都减小,同时结构的变形也减小,但半跨荷载下的变形幅度小于全跨荷载下的变形幅度,因此,当垂跨比达到个特定值后,位移反应的不利荷载由全跨荷载转为半跨荷载。上弦梁的惯性矩的影响随着上弦梁的惯性矩的增大,全跨荷载下的变形儿乎没有变化,但半跨荷裁下的变形显著减小,并且全跨荷载下的最大正应力和半跨荷载下的梁的正应力也减小,所以通过增大梁的惯性矩,来提高半跨荷载下的刚度及结构受力性能是有益的。梁截面面积的影响随着梁截面面积的增大,除梁的正应力有所减小外其它内力及变形几乎没有变化,所以提高梁的面积,对受力性能的改善是不明显的。下弦索的预应力的影响随着下弦索的预应力的增大,变形显著减小,拱的正应力也趋向于减小,但不明显,所以弦的预应力主要有助于减小变形。下弦索的面积的影响随着下弦索的面积的增大,变形和索的内力显著减小,梁的正应力也趋向于减小,但幅度不大,所以单纯增大弦的面积,虽能提高刚度,但弦的材料强度不能充分利用。梁截面型式的影响梁截面采用工字型截面相比采用钢管截面,从力学角度看,更经济合理。张弦梁结构尺寸应在建筑允许的条件下,采用尽可能大的垂跨比高跨比的取值要考虑平面外风载的作用大小选择适当的梁的尺寸和弦的面积,使梁的最大正应力和弦的最大应力同步达到材料极限状态,对弦施加定的预应力以提高刚度。文献在对单榀张弦梁的各参数分析的基础上,认为文献中大部分内容比较正确地反映了单榀张弦梁结构的静力性能,但是些数据所反映的趋势并不合理,并提出了些新的认识和结论。垂跨比或高跨比的影响文献认为,随着垂跨比或高跨比的增大,梁截面的弯矩不是减小而是显著增加,所以不应该无限制地提高垂跨比和高跨比。弦的预应力的影响文献认为,随着下弦索的预应力的增大,变形显著减小,而文献的计算分析则表明,预应力的增大对于结构变形的影响几乎可以忽略不计,甚至还略有影响就预应力对张弦梁结构的内力的影响来看,文献认为预应力的增大会导致结构所有内力项都相应增大,对于上弦梁的主要内力弯矩的影响尤为显著。对单榀张弦梁结构各因素影响分析的新认识鉴于以上文献分析,本人觉得还有如下方面影响因素分析垂跨比高跨比撑杆的布置方式如斜向布置竖斜向布置,还有考虑撑杆和拉索的接触分析。结论与展望本文就张弦梁结构的受力机理和分类作了定的说明,施工中的找形问题的方法作了介绍,还有介绍了目前文献中有关对张弦梁结构的影响因素及本人觉得还应该考虑的些因素。在目前的研究中,还应该考虑的些问题索单元的数值模型问题。采用杆单元是不能精确描述索在低应力水平下的状态,选择合适的索单元来进行数值分析是值得讨论的问题。对非线性有限元的收敛速度需要做深入的研究。在结构计算中经常会遇到用非线性有限元计算不收敛的问题。对于大跨度张弦梁结构的风致振动结构的振动特性以及振动控制是目前急需研究的问题,包括风场和风速的模拟随机振动和藕合问题等本文讨论的基本上是单榀平面张弦梁结构,此外,对于空间张弦梁结构比如空间双向多向张弦梁结构辐射式张弦梁结构其受力性能,有待更进步的分析和研究。现在的分析都是基于线弹性材料下的几何非线性分析,对于强震等较大荷载作用下的弹塑性分析,有待更进步的研究。附录,,,,,,,
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 77 页
第 2 页 / 共 77 页
第 3 页 / 共 77 页
第 4 页 / 共 77 页
第 5 页 / 共 77 页
第 6 页 / 共 77 页
第 7 页 / 共 77 页
第 8 页 / 共 77 页
第 9 页 / 共 77 页
第 10 页 / 共 77 页
第 11 页 / 共 77 页
第 12 页 / 共 77 页
第 13 页 / 共 77 页
第 14 页 / 共 77 页
第 15 页 / 共 77 页
预览结束,还剩
62 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。