1、“.....而求出如下所示的美尔倒谱系数式中表示倒谱系数,表示美尔倒谱系数,为迭代次数,为倒谱阶数,般。迭代时从大到取值,最后求得的美尔倒谱系数放在里。当抽样频率分别为时,取,这样可以近似于美尔尺度。在本文中其代码为对于阶数为,要特殊处理桂林电子科技大学毕业设计论文第页共页其他情况采用下列算法得倒谱倒谱距离的检测算法步骤在倒谱距离检测的算法中,首先需计算出的每帧的系数噪声倒谱系数估计值等,然后由每帧信号的倒谱系数和噪声倒谱系数估计值通过公式计算出倒谱值,然后才能对语音信号进行端点检测,其检测算法思路如下预处理......”。
2、“.....然后分帧加窗,帧长取个采样点,帧移对每帧信号加点窗。估计噪声倒谱系数和倒谱距离。数取,抽样信号起始帧是背景噪声,利用这帧的前帧倒谱系数的统计平均值作为背景嗓声倒谱系数的估计值用向量表示。时采用式计算这帧的后帧倒谱距离平均值作为背景噪声倒谱距离的估计值,其中表示当前帧的倒谱系数,为对应于的倒谱系数。逐帧计算值。逐帧计算倒谱系数,然后由每帧信号的倒谱系数和噪声倒谱系数估值通过式计算倒谱距离。确定判决门限。采用类似于短时能里检测法的动态门限判决准则,设定两个门限和,式中为噪声倒谱距离估值,分别为两个门限的乘系数,且,以保证,这里取,。根据各帧的值进行端点检测。如果当前帧的值大于,则记录该帧位置为,然后继续计算后面各帧的值,若在该帧之后若干帧以内......”。
3、“.....则认为为语音的起点,否则继续搜索。终点的检测可类比起点的检测得到。根据倒谱距离的计算公式,文中计算倒谱距离主要代码如下,计算倒谱距离桂林电子科技大学毕业设计论文第页共页本文在进行端点检测之前,先对语音信号进行预处理即对其分帧加窗,在本文中帧长为,帧移为,汉明窗。然后计算出背景噪声倒谱系数的估计值系数逐帧计算倒谱系数,最后根据倒谱距离计算出倒谱值,然后设置两个门限和,再根据个帧的倒谱值进行端点检测。其中为比较低的门限,其数值比较小,对信号的变化比较敏感,很容易就会超过。是比较高的门限,数值比较大,信号必须达到定的强度,该门限才可能被超过。低们限被超过未必就是语音信号的开始,有可能是时间很短的噪声引起的。高门限被超过则可以基本确信是由于语音信号引起的......”。
4、“.....程序中使用个变量来表示当前所处的状态。在静音段,如果倒谱值超越了低门限,就应该开始标记起始点,进入过渡段,并更新当前状态。在过渡段中,由于参数的数值比较小,不能确信是否处于真正的语音段,若在那帧之后若干帧以内,连续几帧都大于,就可以确信进入语音段落。若倒谱值连续大于则保持在语音段。若倒谱值回落到以下,而且总的记时长度小于最短时间门限,则认为这是段噪音,继续扫描以后的语音数据,否则就标记为结束端点,并返回。基于倒谱语音端点检测实验分析倒谱能很好表示语音的特征,因此在大多数语音识别系统中选择倒谱系数作为输入特征矢量,在噪声环境下短时能量与其它特征参数都不能很好地区分语音段与非语音段......”。
5、“.....其中红色竖线表示语音起点线,绿色竖线表示终点线,其检测波形如下图所示图原始语音信号倒谱法语音端点检测波形图桂林电子科技大学毕业设计论文第页共页图下谱法语音端点检测波形图图下倒谱法语音端点检测波形图上图为较纯净的原始语音信号采用倒谱法进行语音端点测检的仿真图,从图中检测结果可以看出每个语音段的端点都检测得很好。从图中还可以看出在语音部分倒谱值较大,而在静音段倒谱值很小,所以可以用这个特性来区分语音段和非语音段。从上图中可以看出在高信噪比时倒谱语音端点检测算法检测效果与较纯净的原始语音信号检测结果差不多,都能很好的检测出各语音段的起止点。上图为低信噪比条件下倒谱法语音端点检测的仿真图......”。
6、“.....从以上仿真图可以看出基于倒谱特征语音端点检测在较纯净的语音信号和高信噪比条件下其端点检测结果很好,而在低信噪比条件下完全没有检测出语音的端点。由此可见这种方法在较纯语音信号和高信噪比时,能十分有效的检测出语音信号的端点,但是随着信噪比的下降,其检测结果率明显变差,特别是在噪声很大时,完全不能检测出语音端点,说明在大噪声环境下不适合用该方法进行语音端点检测。基于谱熵的语音端点检测传统的语音端点检测算法,如基于短时能量以及短时过零率的检测方法,虽然计算桂林电子科技大学毕业设计论文第页共页简便,但是在低信噪比的情况下,该算法的检测效果就会很差,基于模式识别的方法准确性较好,但是相对来说计算量大,运算复杂......”。
7、“.....为了解决语音信号能量小易被淹没以及避免大量运算,本章介绍种基于语音熵的语音端点检测算法。谱熵定义所谓熵就是表示信息的有序程度。在信息论中,熵描述了随机事件结局的不确定性,即个信息源发出的信号以信息熵来作为信息选择和不确定性的度量,是由引用到信息理论中来的。年,首次提出基于熵的语音端点检测方法,在实验中发现语音的熵和噪声的熵存在较大的差异,谱熵这特征具有定的可选性,它体现了语音和噪声在整个信号段中的分布概率。谱熵的计算方法如下首先通过快速傅立叶变换得到每帧信号的频谱,其中每个频谱向量的系数表明了该帧信号在该频率点的大小分布。然后计算每个频谱分量在每帧总能量中所占的比例,将其作为信号能量集中在频率点的概率,其概率密度函数定义为式中是的能量......”。
8、“.....是中频率成分的所有点数。由于语音信双门限端点检测算法和倒谱端点检测算法好。第四章总结与展望语音信号端点检测是语音信号处理中非常重要的项预处理技术,因此是语音信号处理中不可缺少的步。本文主要围绕端点检测方法进行研究,具体所做的工作主要有以下几个方面介绍了语音信号处理中的些基础处理知识,例如短时分析技术预加重加窗和分帧等。对短时能量检测法过零率检测法等进行了介绍,陈述了它们的优缺点。传统的双门限算法倒谱特征的语音端点检测算法和谱熵语音端点检测算法对语音信号进行端点检测。再通过对不同信噪比情况下端的点检测结果进行实验分析,实验结果表明在这几种算法中谱熵语音端点检测检测结果是最好的。随着语音相关学科的发展和新兴技术的不断出现必将使得未来的语音系统逐渐智能化......”。
9、“.....如何有效地结合多种抗噪性能好的特征参数,使其更简洁完善精确高效鲁棒性好等将是今后研究的个重要方面。桂林电子科技大学毕业设计论文第页共页谢辞在此感谢我的导师邓艳容老师在本次毕业设计中耐心的指导,从毕业设计的选题,到基于语音端点检测算法的确定,以及在设计研究实验过程中及其论文的撰写,每步都倾注着导师的心血。经过几个月的努力,毕业设计基本完成了。在毕业设计过程中,使我学到很多新的知识,同时也加深了以前所学的知识,让我理解和学习了语音端点检测这项语音信号处理技术,积累了宝贵的经验。在完成设计的过程中导师耐心的指导和严谨的治学态度,精湛的学术造诣和诲人不倦的精神给我留下了非常深刻的印象,使我受益匪浅,为我今后的学习和工作树立了楷模......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。