帮帮文库

返回

群众工作站工作计划安排【2017】 群众工作站工作计划安排【2017】

格式:word 上传:2023-09-21 14:21:13

《群众工作站工作计划安排【2017】》修改意见稿

1、“.....得解,得或解,得,综上所述思维升华幂函数的形式是∈,其中只有个参数,因此只需个条件即可确定其解析式在区间,上,幂函数中指数越大,函数图象越靠近轴简记为指大图低,在区间,∞上,幂函数中指数越大,函数图象越远离轴已知幂函数象如图所示由,若函数在区间,上的最大值为,则实数答案解析函数的图象为开口向上的抛物线,函数的最大值在区间的端点取得,或解得幂函数,与在第象限内的图象如图所示,则与的取值范围分别为答案,若∀∈∃∈使得,则实数的取值范围是答案,∞解析由函数,当∈,时,即函数的值域为当∈,时,函数若满足题意则解得当解析如图所示为函数在,上的图象,由此可知,已知函数的定义域为,值域为,∞,则的值为答案或解析由于函数的值域为,∞,所以又,当∈时即,解得或已知函数,为实数,≠,∈若函数的图象过点且方程有且只有个根,求的表达式在的条件下,当∈,时,是单调函数,求实数的取值范围解因为,即,所以因为方程有且只有个根,所以所以,所以,所以所以由的图象知要满足题意,则或,即或,所以所求实数的取值范围为∞,∪,∞已知函数,若∈,时,恒成立......”

2、“.....则函数在区间,上的最小值不小于,设的最小值为当时得,故此时不存在当∈即时,,得又,故当,即时得,又,故,综上得组专项能力提升时间分钟已知函数是定义在区间,上的奇函数,则答案解析由已知,必有,即,或当时,函数即,∈在处无意义,故舍去当时,函数即,此时∈符合题意已知幂函数,当时,恒有时当时,幂函数的图象都过点,和且在,∞上单调递增④当,即,解得已知函数的图象在轴上方,则的取值范围是答案,∞解析由题意知函数的图象是填序号答案解析显然,说明函数是奇函数,同时由当时当时,故只有符合已知函数在闭区间,上有最大值,最小值,则的取值范围为答案,解析如图,由图象可知的取值范围是,教材改编已知幂函数的图象过点则此函数的解析式为在区间上递减答案,∞题型求二次函数的解析式例已知二次函数满足且的最大值是,试确定此二次函数的解析式解方法利用般式设≠由题意得,解得所求二次函数为方法二利用顶点式设,抛物线的图象的对称轴为又根据题意函数有最大值,,解得,方法三利用零点式由已知的两根为故可设,即又函数的最大值是......”

3、“.....所求函数的解析式为思维升华求二次函数的解析式,关键是灵活选取二次函数解析式的形式,所用所给出的条件,根据二次函数的性质进行求解度于反射弧的感受器处受到损伤,用微电极刺激可能的原因之是该患者低密度脂蛋白含量过高血管壁的压力愈高,动脉管壁的扩张会发生图丁的变化④血管弹性下降,收缩压将升高,舒张压将下降从图甲到图乙,收缩压逐渐减少,舒张压逐渐增大项两项三项是人的心脏跳动次产综上,实数的取值范围是∞,思维升华二次函数最值问题解法抓住三点轴数形结合,三点是指区间两个端点和中点,轴指的是对称轴,结合配方法围为答案,∞∞,解析由题意得对在,上恒成立当时,适合当≠时,因为∈∞,命题点二次函数中的恒成立问题例设函数,对于满足,则实数的取值范围为已知是实数,函数在∈,上恒小于零,则实数的取值范,对称轴为直线,不定在区间,内,应进行讨论,当时,函数在,上单调递减,在,上单调递增,则当时,取得最小值,即综上,当时,数的最大值为答案解析,如图,引申探究已知函数,若∈求的最小值解函数,其图象如图所示又∈在区间,和,上为减函数,在区间,和......”

4、“.....若∈则函在,上为单调函数,只需或,解得或故的取值范围是∞,∪,∞当时,,∈知函数,若∈求的最小值解函数,其图象如图所示又∈在区间,和,上为减函数,在区间,和,上为增函数命题点二次函数的最值例已知函数,若∈则函在,上为单调函数,只需或,解得或故的取值范围是∞,∪,∞当时,,∈求实数的取值范围,使在区间,上是单调函数当时,求的单调区间解函数的图象的对称轴为,要使,∈求实数的取值范围,使在区间,上是单调函数当时,求的单调区间解函数的图象的对称轴为,要使在,上为单调函数,只需或,解得或故的取值范围是∞,∪,∞当时,,其图象如图所示又∈在区间,和,上为减函数,在区间,和,上为增函数命题点二次函数的最值例已知函数,若∈则函数的最大值为答案解析,如图,引申探究已知函数,若∈求的最小值解函数,对称轴为直线,不定在区间,内,应进行讨论,当时,函数在,上单调递减,在,上单调递增,则当时,取得最小值,即综上,当时,命题点二次函数中的恒成立问题例设函数,对于满足,则实数的取值范围为已知是实数,函数在∈,上恒小于零......”

5、“.....∞∞,解析由题意得对在,上恒成立当时,适合当≠时,因为∈∞,∪,∞,当时,右边取最小值,所以综上,实数的取值范围是∞,思维升华二次函数最值问题解法抓住三点轴数形结合,三点是指区间两个端点和中点,轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成由不等式恒成立求参数取值范围的思路及关键般有两个解题思路是分离参数二是不分离参数两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离这两个思路的依据是恒成立⇔,恒成立⇔若二次函数≠,满足且求函数的解析式若存在∈使不等式成立,求实数的取值范围解由,得,所以≠,因为,所以,解得,所以由,可得,则实数的取值范围是答案,解析由幂函数的定义知又,所以,解得,从而因为函数的定义域为,∞,且在定义域内为增函数,所以不等式等价于生血压的工作模式图,图丙是血管内壁造影模式图,图丁是主动脉扩张程度的前后对照则下列关于血压的叙述正确的有在血管至中,舒张压主要针对血管壁的压力而言图丙血管内壁的粥样增厚神经肌接头处可发生电信号与化学信号的转变电刺激处,肌肉会收缩......”

6、“.....社会实践调查报告总结贫项目实施时所需的物资如水泥钢材等,采购已缴纳了应征税额,但却因报账时必须按工程总造价到税务部门开具大额发票,又得再缴纳次税费。扶贫项目税费收取不规范导致了扶贫资金的流失,基层干部群众对此意见很大。四整村推进与农民个体脱贫不甚协调整村推进扶贫模式的确立从指导思想上是要实现整村脱贫,形成整村致富的氛围。但贫困村内的收入差距有不断扩大的趋势。整村推进的扶贫项目中几乎致是修路建桥打井等基础讲担当转作风抓落实,单位员工转正申请书,毕业个人简历自我鉴定项目大部分与扶贫开发项目接近,甚至类同,但由于管理办法管理部门不同,难以形成合力。条块分割资金分散导致了农业缺口项目拼凑项目难以避免,极大地影响了财政农业投入资金整体效益的发挥。三扶贫政策自身设计存在定缺陷,导致政策执行难以到位是扶贫补助标准偏低。比如移民搬迁扶贫,我省补助的标准是计原则应当能够体现生态学原理与现代农业技术相结合的原则。应当能够构成个合理的生产结构。应当体现充分利生态系统,能量传递效率是不会改变的,。下列有关生态工程的原理和实例中......”

7、“.....后面砍林违反系统学和工程学原理答案解析项中讲的是在追求生态效益时必须考虑到社会效益经济效益,这明显是整体性原理。关于生态工程的几个问题生态工程建设的目的遵循自然界物质循环的规律,充分发挥资源的生产潜力,防止环境污染,使经济效益和生态效益同步发展。生态工程的特点具有少消耗多效益可持续的特点。生态工程的理解涉及的学科知识包括生态学和系统学运用到的技术手段或方法有系统设计调控和技术组装最终目的是促进人类社会和自然环境的和谐发展。生态工程的主要任务对已被破坏的生态环境或受损的生态系统进行修复,对造成环境污染和破坏的生产方式进行改善,并提高生态系统的生产力。考点二生态工程的实例及前景生态工程实例连线生态工程的发展前景生物圈号生态工程实验的启示使我们认识到人与自然和谐共处的重要性,深化了我们对自然规律的认识。发展前景我们需要走有中国特色的道路,即不但要重视对生态环境的保护,更要注重与经济社会效益的结合。诊断与思考判断下列说法的正误无废弃物农业遵循的是物种多样性原理在建设高新农业时......”

8、“.....个生态系统中种群的数量不应超过环境容纳量总体功能大于各部分之和的效果是利用系统整体性原理在建设生态工程时,既要考虑自然生态系统的规律,还要考虑到经济和社会等系统的影响力如图是生态工程示意图。请据图思考下列问题从生态学角度分析,人们建立图示的农业生态系统的主要目的是什么图中的废弃物合理利用能体现生态工程的什么原理提示目的是实现物质的循环再生和能量的多级利用废弃物的合理利用,能体现生态工程的物质循环再生原理。从环境保护的角度分析,该生态工程能生产出无公害指针也会解,得解,得或解,得,综上所述思维升华幂函数的形式是∈,其中只有个参数,因此只需个条件即可确定其解析式在区间,上,幂函数中指数越大,函数图象越靠近轴简记为指大图低,在区间,∞上,幂函数中指数越大,函数图象越远离轴已知幂函数象如图所示由,若函数在区间,上的最大值为,则实数答案解析函数的图象为开口向上的抛物线,函数的最大值在区间的端点取得,或解得幂函数,与在第象限内的图象如图所示,则与的取值范围分别为答案,若∀∈∃∈使得,则实数的取值范围是答案,∞解析由函数......”

9、“.....时,即函数的值域为当∈,时,函数若满足题意则解得当解析如图所示为函数在,上的图象,由此可知,已知函数的定义域为,值域为,∞,则的值为答案或解析由于函数的值域为,∞,所以又,当∈时即,解得或已知函数,为实数,≠,∈若函数的图象过点且方程有且只有个根,求的表达式在的条件下,当∈,时,是单调函数,求实数的取值范围解因为,即,所以因为方程有且只有个根,所以所以,所以,所以所以由的图象知要满足题意,则或,即或,所以所求实数的取值范围为∞,∪,∞已知函数,若∈,时,恒成立,求的取值范围解要使恒成立,则函数在区间,上的最小值不小于,设的最小值为当时得,故此时不存在当∈即时,,得又,故当,即时得,又,故,综上得组专项能力提升时间分钟已知函数是定义在区间,上的奇函数,则答案解析由已知,必有,即,或当时,函数即,∈在处无意义,故舍去当时,函数即,此时∈符合题意已知幂函数,当时,恒有时当时,幂函数的图象都过点,和且在,∞上单调递增④当,即,解得已知函数的图象在轴上方,则的取值范围是答案,∞解析由题意知函数的图象是填序号答案解析显然,说明函数是奇函数......”

下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
群众工作站工作计划安排范文.doc预览图(1)
1 页 / 共 6
群众工作站工作计划安排范文.doc预览图(2)
2 页 / 共 6
群众工作站工作计划安排范文.doc预览图(3)
3 页 / 共 6
群众工作站工作计划安排范文.doc预览图(4)
4 页 / 共 6
群众工作站工作计划安排范文.doc预览图(5)
5 页 / 共 6
群众工作站工作计划安排范文.doc预览图(6)
6 页 / 共 6
预览结束,喜欢就下载吧!
  • 内容预览结束,喜欢就下载吧!
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档