重汽车,采用全浮式结构。设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。.半轴的设计与计算全浮式半轴的计算载荷的确定计算时首先应合理地确定作用在半轴上的载荷,应考虑到以下三种可能的载荷工况纵向力驱动力或制动力最大时,其最大值为,附着系数在计算时取.,没有侧向力作用侧向力最大时,其最大值为发生于汽车侧滑时,侧滑时轮胎与地面的侧向附着系数在计算时取.,没有纵向力作用垂向力最大时发生在汽车以可能的高速通过不平路面时,其值为,其中为车轮对地面的垂直载荷,为动载荷系数,这时不考虑纵向力和侧向力的作用。由于车轮承受的纵向力,侧向力值的大小受车轮与地面最大附着力的限制,即有故纵向力最大时不会有侧向力作用,而侧向力最大时也不会有纵向力作用。全浮式半轴只承受转矩,只计算在上述第种工况下转矩,如图.为全浮半轴支撑示意图。其计算可按求得,其中,的计算,可根据最大附着力和发动机最大转矩计算,并取两者中的较小者。若按最大附着力计算,即.式中轮胎与地面的附着系数取.汽车加速或减速时的质量转移系数,可取在此取.。根据上式若按发动机最大转矩计算,即.式中差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取.发动机最大转矩,•汽车传动效率,计算时可取.传动系最低挡传动比.轮胎的滚动半径,.。根据上式.所以取.,应按发动机最大转矩计算则转矩为.•全浮式半轴的支承方式如图.所示。图.全浮式半轴支承示意图全浮半轴杆部直径的初选设计时,全浮式半轴杆部直径的初步选择可按下式进行.,取式中半轴杆部直径半轴的计算转矩,.半轴转矩许用应力,。因半轴材料取,为左右,考虑安全系数在之间,可取。全浮半轴强度计算半轴的扭转应力可由下式计算.式中半轴扭转应力,半轴的计算转矩.半轴杆部直径半轴的扭转许用应力,取。.,强度满足要求。半轴的最大扭转角为.式中半轴承受的最大转矩,.半轴长度材料的剪切弹性模量.半轴横截面的极惯性矩,.。经计算最大扭转角.,扭转角宜选为满足条件。全浮式半轴花键强度计算为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做得粗些,并适当地减小花键槽的深度,因此花键齿数必须相应地增加,通常取齿轿车半轴至齿载货汽车半轴。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中,本次设计时考虑到此处花键部分与杆部之间的倒角为。重型车半轴的杆部较粗,外端突缘也很大,当无较大锻造设备时可采用两端均为花键联接的结构,且取相同花键参数以简化工艺。在现代汽车半轴上,渐开线花键用得较广,但也有采用矩形或梯形花键的。本次设计采用带有凸缘的全浮式半轴,采用渐开线花键。根据杆部直径为,选择的渐开线的花键具体参数为花键齿数为,模数.分度圆直径.,分度圆上压力角为。半轴花键的剪切应力为.半轴花键的挤压应力为.式中半轴承受的最大转矩.半轴花键外径,相配的花键孔内径,花键齿数花键的工作长度花键齿宽,.载荷分布的不均匀系数,计算时取为.。根据据上式计算当传递最大转矩时,半轴花键的剪切应力不超过.,挤压应力不超过,所以校核成功。.半轴材料与热处理见表.。表.轴常用材料的机械性能材料牌号热处理毛坯直径硬度抗拉强度屈服强度弯曲疲劳极限扭转疲劳极限许用弯曲应力备注调质用于载荷较大,而无很大冲击的重要轴。半轴多采用含铬的中碳合金钢制造,如,等。是我国研制出的新钢种,作为半轴材料效果很好。半轴的热处理过去都采用调质处理的方法,调质后要求杆部硬度为突缘部分可降至。近年来采用高频中频感应淬火的口益增多。这种处理方法使半轴表面淬硬达,硬化层深约为其半径的,心部硬度可定为花键部分表面硬度不淬火区突缘等的硬度可定在范围内。由于硬化层本身的强度较高,加之在半轴表面形成大的残余压应力,以及采用喷丸处理滚压半轴突缘根部过渡圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高得十分显著。由于这些先进工艺的采用,不用合金钢而采用中碳号号钢的半轴也日益增多。本次设计半轴即采用,中频感应淬火。.本章小结首先本章对半轴的功用进行了说明,并且在纵向力最大时确定了半轴的计算载荷。对半轴进行了具体的设计计算,确定了半轴的各部分尺寸,并进行了校核。最后对材料和热处理做了加以说明。第章驱动桥桥壳的设计.概述驱动桥壳的主要功用是支承汽车质量,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮,承受车轮传来的路面反力和反力矩,并经悬架传给车身,因此桥完既是承载件又是传力件它同时又是主减速器,差速器和半轴的装配体。驱动桥壳应满足如下设计要求应具有足够的强度和刚度,以