1、“.....。差速器齿轮的强度计算差速器齿轮主要进行弯曲强度计算,而对于疲劳寿命则不予考虑,这是由于行星齿轮在差速器的工作中经常只起等臂推力杆的作用,仅在左右驱动车轮有转速差时行星齿轮和半轴齿轮之间有相对滚动的缘故。汽车差速器齿轮的弯曲应力为.式中差速器个行星齿轮给予个半轴齿轮的转矩,......”。
2、“.....质量系数.尺寸系数载荷分配系数.齿面宽模数计算汽车差速器齿轮弯曲应力的总和系数.,见图.。图.弯曲计算用综合系数以计算得.以计算得综上所述,差速器齿轮强度满足要求。.本章小结本章首先说明了差速器作用及工作原理,对对称式圆锥行星齿轮差速器的基本参数进行了必要的设计计算,对差速器齿轮的几何尺寸及强度进行了必要的计算,最终确定了所设计差速器的各个参数,取得机械设计机械制造的标准值并满足了强度计算和校核......”。
3、“.....其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中.驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮和轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。.半轴形式的确定浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势......”。
4、“.....故未得到推广。全浮式半轴广泛应用于轻型以上的各类汽车上。本次设计选择全浮式半轴。.半轴的设计与计算半轴的主要尺寸是它的直径,设计计算时首先应合理地确定其计算载荷。半轴计算应考虑到以下三种可能的载荷工况纵向力驱动力或制动力最大时,附着系数取.,没有侧向力作用侧向力最大时,其最大值发生于侧滑时,为,侧滑时轮胎与地面的侧向附着系数在计算中取.,没有纵向力作用垂向力最大时,这发生在汽车以可能的高速通过不平路面时,其值为......”。
5、“.....这时没有纵向力和侧向力的作用。半轴的设计杆部直径的选择设计时,半浮式半轴杆部直径的初步选择可按下式进行取.式中半轴杆部直径半轴的计算转矩,.半轴转矩许用应力,。因半轴材料取,为.左右,考虑安全系数在之间,可取半轴的扭转应力可由下式计算式中半轴扭转应力,半轴的计算转矩.半轴杆部直径。半轴花键的剪切应力为.半轴花键的挤压应力为.式中半轴承受的最大转矩.半轴花键外径,相配的花键孔内径,......”。
6、“.....可取为.。注花键的选择渐开线初选分度圆直径,则模数,取标准模数半轴的最大扭转角为.式中半轴承受的最大转矩,.半轴长度材料的剪切弹性模量.半轴横截面的极惯性矩,.。全浮式半轴的设计计算全浮式半轴在上述第种工况下纵向力应按最大附着力计算,即式中满载静止汽车的驱动桥对水平地面的载荷,取.汽车加速和减速时的质量转移系数,对于后驱动桥可取.轮胎与的地面的附着系数.对于驱动车轮来说......”。
7、“.....则按下式计算,即或式中差速器的转矩分配系数.发动机最大转矩传动系最低档传动比.汽车传动效率.轮胎滚动半径.。取两者的较小值,所以.转矩为注第二种和第三种工况未计算,图.为全浮式半轴支承示意图。图.全浮式半轴支承示意图.半轴的结构设计及材料与热处理为了使半轴和花键内径不小于其干部直径,常常将加工花键的端部都做得粗些,并使当地减小花键槽的深度......”。
8、“.....半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。为了使半轴杆部和突缘间的过渡圆角都有较大的半径而不致引起其他零件的干涉,常常将半轴凸缘用平锻机锻造。本设计半轴采用,半轴的热处理采用高频中频感应淬火。这种处理方法使半轴表面淬硬达,硬化层深约为其半径的,心部硬度可定为不淬火区凸缘等的硬度可定在范围内。由于硬化层本身的强度较高,加之在半轴表面形成大的残余压应力......”。
9、“.....使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高十分显著。.本章小结本章对半轴做了设计计算。在全浮式半轴的设计计算中首先考虑到三种可能的载荷工况。对纵向力驱动力或制动力最大时,没有侧向力作用这工况进行了计算。做了必要的半轴设计计算并进行了校核选取了机械设计机械制造标准值,对材料和热处理做了必要的说明。第章驱动桥桥壳的校核驱动桥桥壳是汽车上的主要零件之......”。
毕业设计答辩相关材料.doc
毕业设计中期检查表.doc
过程管理材料封皮.doc
开题报告.doc
全部图纸汇总 6张.dwg
(CAD图纸)
任务书.doc
设计说明书.doc
题目审定表.doc