1、“.....故函数为奇函数,解析答案已知则的大小关系为解析故解析答案函数的大致图象是填图象序号解析由函数的定义域为,,,值域为又当时,函数单调递增,所以只有正确解析答案浙江若,则解析解析答案教材改编若,且,则实数的取值范围是解析当时,,,实数的取值范围是,......”。
2、“.....且,则解析,的值是解析原式解析答案思维升华计算解析原式跟踪训练解析答案已知则解析解析答案题型二对数函数的图象及应用例函数的图象大致是填序号解析函数的定义域为排除又函数在定义域内单调递减,排除故正确解析答案当时不满足条件,当......”。
3、“.....则函数与函数的图象可能是解析的定义域是,,故排除若,则,是减函数,排除,故填跟踪训练解析答案设方程的两个根分别数,若引入中间量,般选或思想方法感悟提高对数值取正负值的规律当且或当且时,进行分类讨论方法与技巧比较幂对数大小有两种常用方法数形结合找中间量结合函数单调性多个对数函数图象比较底数大小的问题......”。
4、“.....要特别注意条件,在无的条件下应为,且为偶数解决与对数函数有关的问题时需注意两点务必先研究函数的定义域注意对数底数的取值范围失误与防范返回练出高分若函数,且的图象如图所示,则下列函数图象正确的是填序号解析答案解析,综上可得......”。
5、“.....,则解析,解析答案设是奇函数,则使的的取值范围是解析由是奇函数可得定义域为,由,可得解析答案定义在上的函数满足且,时则解析由,得,因为,所以解析答案函数的最小值为解析显然,当且仅当时,有解析答案设函数满足,则解析由已知得,则,则......”。
6、“.....,则实数的取值范围是解析由题意的图象如右图则解析答案已知函数在区间,上是增函数,求的取值范围解析答案设,,且求的值及的定义域解,,由,得函数的定义域为,解析答案求在区间,上的最大值解,当,时,是增函数当,时,是减函数,故函数在,上的最大值是解析答案陕西改编设若......”。
7、“.....如果,的次幂等于,即,那么就称是以为底的对数,记作,叫做真数对数的性质与运算法则对数的运算法则如果且,那么知识梳理答案,,且对数的性质且对数的重要公式换底公式......”。
8、“.....推广答案对数函数的图象与性质图象性质定义域值域过定点,即时,当时,当时,当增函数减函数反函数指数函数与对数函数互为反函数,它们的图象关于直线对称答案判断下面结论是否正确请在括号中打或“”若,则函数及都是对数函数对数函数,且在......”。
9、“.....则有关的性质判断正确的是填序号奇函数,且在,上是增函数奇函数,且在,上是减函数偶函数,且在,上是增函数偶函数,且在,上是减函数考点自测解析答案又,由复合函数单调性判断方法知,在,上是增函数答案解析易知函数定义域为,故函数为奇函数......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。