帮帮文库

返回

TOP66七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt文档免费在线阅读 TOP66七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt文档免费在线阅读

格式:PPT 上传:2025-12-29 14:59:51
圆所在的平面,可证明⊥又,为的中点,可证明⊥,进而证明结论三棱锥中,高,要使得体积最大,则底面面积最大,又是定值,故当边上的高最大,此时高为半径,进而求三棱锥体积将侧面绕旋转至平面,使之与平面共面,此时线段的长度即为的最小值解析解法在中,因为,为的中点,所以⊥又垂直于圆所在的平面,所以⊥因为∩,所以⊥平面因为点在圆上,所以当⊥时,到的距离最大,且最大值为又,所以面积的最大值为又因为三棱锥的高,故三棱锥体积的最大值为在中,所以同理,所以在三棱锥中,将侧面绕旋转至平面,使之与平面共面,如图所示当共线时,取得最小值又因为所以垂直平分,即为中点从而,亦即的最小值为解法二同解法在中,所以,同理所以,所以在三棱锥中,将侧面绕旋转至平面,使之与平面共面,如图所示当共线时,取得最小值所以在中,由余弦定理得从而所以的最小值为分如图,在直角梯形中,,将沿折起,使平面⊥平面,得到几何体,如图所示求证⊥平面求几何体的体积解析解法在图中,可得故⊥如右图,取中点为,连接,则⊥,又平面⊥平面,平面∩平面,⊂平面,⊥平面⊥又⊥,∩,⊥平面解法二在图中,可得,故⊥又平面⊥平面,平面∩平面,⊂平面,从而⊥平面由可知为三棱锥的高由等积性可知几何体的体积为分陕西卷如图所示,在直角梯形中,,是的中点,是与的交点,将沿折起到图中的位置,得到四棱锥证明⊥平面当平面⊥平面时,四棱锥的体积为,求的值分析在图中,因为,是的中点,,所以四边形是正方形,故⊥,又在图中,⊥,⊥,从而⊥平面,又且,所以,即可证明⊥平面由已知,平面平面,且平面∩平面,又由Ⅰ知,⊥,所以⊥平面,即是四棱锥的高,易求得平行四边形面积,从而四棱锥的为,由,得解析在图中,因为,是的中点,所以⊥,即在图中,⊥,⊥从而⊥平面,又,所以⊥平面由已知,平面⊥平面且平面∩平面又由知,⊥,所以⊥平面,即是四棱锥的高,由图可知平行四边形面积,从而四棱锥的体积为,由,得专题综合检测五时间分钟,满分分选择题本大题共小题,每小题分,共分在每小题给出的四个选项中,只有项是符合题目要求的陕西卷个几何体的三视图如图所示,则该几何体的表面积为解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示该几何体的表面积为利用斜二测画法得到如下结论三角形的直观图是三角形平行四边形的直观图是平行四边形正方形的直观图是正方形菱形的直观图是菱形其中正确的是解析由斜二测画法规则知,保持平行性平行轴长度保持不变,平行轴的长度减半故正确,选新课标Ⅱ卷个正方体被个平面截去部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为解析由已知三视图知该几何体是由个正方体截去了个“大角”后剩余的部分,如图所示,截去部分是个三棱锥设正方体的棱长为,则三棱锥的体积为,剩余部分的体积所以,故选等体积的球与正方体,它们的表面积的大小关系是球正方体球正方体球正方体不能确定解析设正方体与球的体积均为,可算出它们的表面积大小用表示,知选下列命题正确的是若两条直线和同个平面所成的角相等,则这两条直线平行若个平面内有三个点到另个平面的距离相等,则这两个平面平行若条直线平行于两个相交平面,则这条直线与这两个平面的交线平行若两个平面都垂直于第三个平面,则这两个平面平行解析若两条直线和同平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以错个平面不在同条直线的三点到另个平面的距离相等,则这两个平面平行,故错若两个平面垂直同个平面,两平面可以平行,也可以垂直,故错故选项正确浙江卷集合体的三视图如图所示单位,则该几何体的体积是解析由题意得,该几何体为立方体与四棱锥的组合,故体积,故选天津卷改编个几何体的三视图如图所示单位,则该几何体的体积为解析由几何体的三视图可知该几何体由两个圆锥和个圆柱构成,其中圆锥的底面半径和高均为,圆柱的底面半径为且其高为,故所求几何体的体积为如图,三棱锥的高分别在和上,且则下面四个图象中大致描绘了三棱锥的体积与的变化关系,的是如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下个命题中,假命题是等腰四棱锥的腰与底面所成的角都相等等腰四棱锥的侧面与底面所成的二面角都相等或互补等腰四棱锥的底面四边形必存在外接圆等腰四棱锥的各顶点必在同球面上如图,模块均由个棱长为的小正方体构成,模块由个棱长为的小正方体构成,现从模块中选出个放到模块上,使得模块成为个棱长为的大正方体,下列方案中能完成任务的是模块模块模块模块蚌埠模拟设,是平面内的两条不同直线,是平面内的两条相交直线,则的个充分而不必要条件是且且且且解析对于选项,不合题意对于选项,由于与是相交直线,而且由的中点,所以⊥,即在图中,⊥,⊥从而⊥平面,又,所以⊥平面由已知,平面⊥平面且平面∩平面又由知,⊥,所以⊥平面,即是四棱锥的高,由图可知平行四边形面积,从而四棱锥的体积为,由,得专题综合检测五时间分钟,满分分选择题本大题共小题,每小题分,共分在每小题给出的四个选项中,只有项是符合题目要求的陕西卷个几何体的的直径,点是圆上异于,的点,垂直于圆所在的平面,且若为线段的中点,求证⊥平面求三棱锥体积的最大值若,点在线段上,求⊥平面,所以,故从而可得,所以的面积为,的面积与的面积均为故三棱锥的侧面积为分福建卷如图,是圆设二面角为,求与平面所成角的大小解析因为底面是菱形,所以⊥,又⊥底面,所以⊥,又∩,⊂面,所以于是几何体的体积等于分如图,四棱锥中,底面为菱形,⊥底面,是上的点,证明⊥平面三棱柱的体积,而三棱锥的体积,三棱锥的体积,所以直三棱柱中为侧棱上的两点,且,求几何体的体积解析的边上的高等于,所以由于直时,且当⊥,∩时,⊥或⊥其中假命题的序号是答案三解答题本大题共小题,共分解答时应写出必要的文字说明证明过程或演算步骤分如图,在⊥,则有因此的取值范围是,答案,关于直线,和平面,有以下四个命题当,,时,当,⊂,⊥时,⊥当∩,解析此题可采用两个极端位置法,即对于位于的中点时随着点到点时,因⊥,⊥,⊥平面,即有⊥对于又因此有为的中点,为线段端点除外上动点现将沿折起,使平面⊥平面在平面内过点作⊥,为垂足设,则的取值范围是此几何体的体积是解析该几何体是由两个长方体组成,下面长方体的体积为,上面的长方体体积为,因此该几何体的体积为答案如图,在长方形中则必有⊥,设,则,又,解得或答案或若几何体的三视图单位如图所示,则形,是的中点,点在线段上,当时,⊥平面解析由直三棱柱及是的中点,得⊥平面,而⊂平面,⊥若⊥平面又由于⊂平面,所以平面⊥平面,所以选二填空题本大题共小题,每小题分,共分请把正确答案填在题中横线上如图所示,在直三棱柱中,底面是为直角的等腰直角三角⊥平面平面⊥平面且平面⊥平面解析因为且是的中点,所以⊥同理有⊥于是⊥平面因为在平面内,所以平面⊥平面,故不符合题意故选深圳调研在四面体中,若且是的中点,则下列正确的是平面⊥平面平面⊥平面平面⊥平面且平面,故可得,充分性成立,而由不定能得到,它们也可以异面,故必要性不成立,符合题意,对于选项,由于,不定相交,故是必要非充分条件对于选项,由可转化为,同选项故可得,充分性成立,而由不定能得到,它们也可以异面,故必要性不成立,符合题意,对于选项,由于,不定相交,故是必要非充分条件对于选项,由可转化为,同选项,故不符合题意故选深圳调研在四面体中,若且是的中点,则下列正确的是平面⊥平面平面⊥平面平面⊥平面且平面⊥平面平面⊥平面且平面⊥平面解析因为且是的中点,所以⊥同理有⊥于是⊥平面因为在平面内,所以平面⊥平面又由于⊂平面,所以平面⊥平面,所以选二填空题本大题共小题,每小题分,共分请把正确答案填在题中横线上如图所示,在直三棱柱中,底面是为直角的等腰直角三角形,是的中点,点在线段上,当时,⊥平面解析由直三棱柱及是的中点,得⊥平面,而⊂平面,⊥若⊥平面,则必有⊥,设,则,又,解得或答案或若几何体的三视图单位如图所示,则此几何体的体积是解析该几何体是由两个长方体组成,下面长方体的体积为,上面的长方体体积为,因此该几何体的体积为答案如图,在长方形中,为的中点,为线段端点除外上动点现将沿折起,使平面⊥平面在平面内过点作⊥,为垂足设,则的取值范围是解析此题可采用两个极端位置法,即对于位于的中点时随着点到点时,因⊥,⊥,⊥平面,即有⊥对于又因此有⊥,则有因此的取值范围是,答案,关于直线,和平面,有以下四个命题当,,时,当,⊂,⊥时,⊥当∩,时,且当⊥,∩时,⊥或⊥其中假命题的序号是答案三解答题本大题共小题,共分解答时应写出必要的文字说明证明过程或演算步骤分如图,在直三棱柱中为侧棱上的两点,且,求几何体的体积解析的边上的高等于,所以由于直三棱柱的体积,而三棱锥的体积,三棱锥的体积,所以于是几何体的体积等于分如图,四棱锥中,底面为菱形,⊥底面,是上的点,证明⊥平面设二面角为,求与平面所成角的大小解析因为底面是菱形,所以⊥,又⊥底面,所以⊥,又∩,⊂面,所以⊥平面,所以,故从而可得,所以的面积为,的面积与的面积均为故三棱锥的侧面积为分福建卷如图,是圆的直径,点是圆上异于,的点,垂直于圆所在的平面,且若为线段的中点,求证⊥平面求三棱锥体积的最大值若,点在线段上,求的最小值分析要证明⊥平面,只需证明垂直于面内的两条相交直线首先由垂直于景区”,使其成为市国内外观光游客最为集中旅游吸引物分布最为密集且品位最高的核心品牌,打造市继“五大平五台山大同平遥”之后又国家级著名景区。昔日西山是市生态环境最好的地方,是城市的生态屏障,但是由于长
下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(1)
1 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(2)
2 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(3)
3 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(4)
4 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(5)
5 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(6)
6 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(7)
7 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(8)
8 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(9)
9 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(10)
10 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(11)
11 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(12)
12 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(13)
13 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(14)
14 页 / 共 23
七年级英语下册 Unit 2 What time do you go to school Period 1课件 (新版)人教新目标版.ppt预览图(15)
15 页 / 共 23
预览结束,还剩 8 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为PPT文档,建议你点击PPT查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档