角形的中线•如图,我们把连结的顶点和它的对边的中点,所得线段叫做的边上的中线,表示为或或•请你在图中画出的另两条边上是直角三角形钝角三角形,上面的结论还成立吗•现在我们来画钝角三角形三边上的高,如图。•显然,上面的结论成立。•请你画个直角三角形,再画出它三边上的高。•上面的结论还成立。三所得线段叫做的边上的高,表示为⊥于点。•注意高与垂线不同,高是线段,垂线是直线。•请你再画出这个三角形边上的高,看看有什么发现•三角形的三条高相交于点。•如果角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。三角形的高•请你在图中画出的条高并说说你画法。•从的顶点向它所对的边所在的直线画垂线,垂足为,角形的外部。课堂练习•课本面练习题。课堂小结•三角形的高中线角平分线的概念和画法。•三角形的三条高三条中线三条角平分线及交点的位置规律。三角形的高中线与角平分线•我们已经知道什么是三中线三条角平分线的交点有什么不同•三角形的三条中线的交点三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三在图中再画出另两个角的平分线,看看有什么发现•三角形三个角的平分线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。•想想三角形的三条高三条表示为或或。•思考三角形的角平分线与角的平分线是样的吗•三角形的角平分线是线段,而角的平分线是射线,是不样的。•请你点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。三角形的角平分线•如图,画的平分线,交所对的边于点,所得线段叫做的角平分线,的对边的中点,所得线段叫做的边上的中线,表示为或或•请你在图中画出的另两条边上的中线,看看有什么发现•三角的三条中线相交于立吗•现在我们来画钝角三角形三边上的高,如图。•显然,上面的结论成立。•请你画个直角三角形,再画出它三边上的高。•上面的结论还成立。三角形的中线•如图,我们把连结的顶点和它⊥于点。•注意高与垂线不同,高是线段,垂线是直线。•请你再画出这个三角形边上的高,看看有什么发现•三角形的三条高相交于点。•如果是直角三角形钝角三角形,上面的结论还成课堂小结•三角形的高中线角平分线的概念和画法。•三角形的三条高三条中线三条角平分线及交点的位置规律。所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高,表示为角形的三条中线的交点三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。课堂练习•课本面练习题。发现•三角形三个角的平分线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。•想想三角形的三条高三条中线三条角平分线的交点有什么不同•三或。•思考三角形的角平分线与角的平分线是样的吗•三角形的角平分线是线段,而角的平分线是射线,是不样的。•请你在图中再画出另两个角的平分线,看看有什么上面的结论还成立吗请画图回答。•上面的结论还成立。三角形的角平分线•如图,画的平分线,交所对的边于点,所得线段叫做的角平分线,表示为或上面的结论还成立吗请画图回答。•上面的结论还成立。三角形的角平分线•如图,画的平分线,交所对的边于点,所得线段叫做的角平分线,表示为或或。•思考三角形的角平分线与角的平分线是样的吗•三角形的角平分线是线段,而角的平分线是射线,是不样的。•请你在图中再画出另两个角的平分线,看看有什么发现•三角形三个角的平分线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。•想想三角形的三条高三条中线三条角平分线的交点有什么不同•三角形的三条中线的交点三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。课堂练习•课本面练习题。课堂小结•三角形的高中线角平分线的概念和画法。•三角形的三条高三条中线三条角平分线及交点的位置规律。所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高,表示为⊥于点。•注意高与垂线不同,高是线段,垂线是直线。•请你再画出这个三角形边上的高,看看有什么发现•三角形的三条高相交于点。•如果是直角三角形钝角三角形,上面的结论还成立吗•现在我们来画钝角三角形三边上的高,如图。•显然,上面的结论成立。•请你画个直角三角形,再画出它三边上的高。•上面的结论还成立。三角形的中线•如图,我们把连结的顶点和它的对边的中点,所得线段叫做的边上的中线,表示为或或•请你在图中画出的另两条边上的中线,看看有什么发现•三角的三条中线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。三角形的角平分线•如图,画的平分线,交所对的边于点,所得线段叫做的角平分线,表示为或或。•思考三角形的角平分线与角的平分线是样的吗•三角形的角平分线是线段,而角的平分线是射线,是不样的。•请你在图中再画出另两个角的平分线,看看有什么发现•三角形三个角的平分线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。•想想三角形的三条高三条中线三条角平分线的交点有什么不同•三角形的三条中线的交点三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。课堂练习•课本面练习题。课堂小结•三角形的高中线角平分线的概念和画法。•三角形的三条高三条中线三条角平分线及交点的位置规律。三角形的高中线与角平分线•我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。三角形的高•请你在图中画出的条高并说说你画法。•从的顶点向它所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高,表示为⊥于点。•注意高与垂线不同,高是线段,垂线是直线。•请你再画出这个三角形边上的高,看看有什么发现•三角形的三条高相交于点。•如果是直角三角形钝角三角形,上面的结论还成立吗•现在我们来画钝角三角形三边上的高,如图。•显然,上面的结论成立。•请你画个直角三角形,再画出它三边上的高。•上面的结论还成立。三角形的中线•如图,我们把连结的顶点和它的对边的中点,所得线段叫做的边上的中线,表示为或或•请你在图中画出的另两条边上的中线,看看有什么发现•三角的三条中线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。三角形的角平分线•如图,画的平分线,交所对的边于点,所得线段叫做的角平分线,表示为或或。•思考三角形的角平分线与角的平分线是样的吗•三角形的角平分线是线段,而角的平分线是射线,是不样的。•请你在图中再画出另两个角的平分线,看看有什么发现•三角形三个角的平分线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。•想想三角形的三条高三条中线三条角平分线的交点有什么不同•三角形的三条中线的交点三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角上面的结论还成立吗请画图回答。•上面的结论还成立。三角形的角平分线•如图,画的平分线,交所对的边于点,所得线段叫做的角平分线,表示为或或。•思考三角形的角平分线与角的平分线是样的吗•三角形的角平分线是线段,而角的平分线是射线,是不样的。•请你在图中再画出另两个角的平分线,看看有什么发现•三角形三个角的平分线相交于点。•如果三角形是直角三角形钝角三角形,上面的结论还成立吗请画图回答。•上面的结论还成立。•想想三角形的三条高三条中线三条角平分线的交点有什么不同•三角形的三条中线的交点三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。课堂练习•课本面练习题。课堂小结•三角形的高中线角平分线的概念和画法。•三角形的三条高三条中线三条角平分线及交点的位置规律。所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高,表示为⊥于点。•注意高与垂线不同,高是线段,垂线是直线。•请你再画出这个三角形边上的高,看看有什么发现•三角形的三条高相交于点。•如果是直角三角形钝角三角形,上面的结论还成立吗•现在我们来画钝角三角形三边上的高,如图。•显然,上面的结论成立。
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 11 页
第 2 页 / 共 11 页
第 3 页 / 共 11 页
第 4 页 / 共 11 页
第 5 页 / 共 11 页
第 6 页 / 共 11 页
第 7 页 / 共 11 页
第 8 页 / 共 11 页
第 9 页 / 共 11 页
第 10 页 / 共 11 页
第 11 页 / 共 11 页
预览结束,喜欢就下载吧!
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。