表示用,表示用表示用,表示解析,运用三角形法则时,要注意两向量首尾相接,当两个向量起点相同时,可以考虑用减法事实上任意个非零向量定可以表示为两个不共线的向量的和,即及,是同平面内任意点变式训练如图,解答下列各题用形,则即,所以,即故选答案类型二用已知向量表示未知向量例如图,在五边形中,若四边形是平行四边形,且,试用表示向量思维启迪寻找设是平面内任意点,则掌握向量加解析式可变形为即不如图类型向量的加减法运算例化简思维启迪利用向量加减法的定义及相关运算律求解解析法统成加法法二利用法三利用,方向是从减向量指向被减向量用三角形法则时,把减向量与被减向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点释疑点非零向量,的差向量的三角不等式当,不共线时如图,作则当,共线且同向时若,则与,同向如图,于是若,则与,反向如图,于是当,共线且反向时,与同向,与反向于是如图类型向量的加减法运算例化简思维启迪利用向量加减法的定义及相关运算律求解解析法统成加法法二利用法三利用设是平面内任意点,则掌握向量加解析式可变形为即不恒成立式可变形为即故正确式可变形为即故正确如图又四边形为平行四边形,则即,所以,即故选答案类型二用已知向量表示未知向量例如图,在五边形中,若四边形是平行四边形,且,试用表示向量思维启迪寻找图形中已知向量与所表示向量的关系,利用向量的加法或减法来进行解析四边形为平行四边形在解决这类问题时,要注意向量加法减法和共线相等向量的应用当运用三角形法则时,要注意两向量首尾相接,当两个向量起点相同时,可以考虑用减法事实上任意个非零向量定可以表示为两个不共线的向量的和,即及,是同平面内任意点变式训练如图,解答下列各题用表示用,表示用表示用,表示解析,类型三向量加减法运算在平面几何中的应用例如图所示,是平行四边形的对角线交点,设,求证思维启迪解析法四边形是平行四边形,法二四边形是平行四边形,即用几何法作两个向量的差应注意以下三点要求两向量有共同起点要弄清减向量与被减向量箭头指向被减向量变式训练如图,在任意四边形中分别为中点,求证解析又为相反向量,为相反向量知识点相反向量与长度相等方向相反的向量叫做相反向量,记作对相反向量的把握要注意以下几点与互为相反向量,即规定零向量的相反向量仍是零向量任向量与其相反向量的和是零向量,即知识点向量的减法定义,即减去个向量相当于加上这个向量的相反向量几何意义以为起点,作向量则,如图所示,即可表示从向量终点指向向量终点的向量讲重点向量减法的运算法则向量的减法运算与向量的加法运算是互逆运算,可以灵活转化,减去个向量等于加上这个向量的相反向量两个向量的差也可用平行四边形法则及三角形法则求得用平行四边形法则时,两个向量也是共起点,和向量是起点与它们的起点重合的那条对角线,而差向量是另条对角线,方向是从减向量指向被减向量用三角形法则时,把减向量与被减向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点释疑点非零向量,的差向量的三角不等式当,不共线时如图,作则当,共线且同向时若,则与,同向如图,于是若,则与,反向如图,于是当,共线且反向时,与同向,与反向于是如图类型向量的加减法运算例化简思维启迪利用向量加减法的定义及相关运算律求解解析法统成加法法二利用法三利用设是平面内任意点,则与,同向如图,于是若,则与,反向如向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点释疑点非零向量,的差向量的三角不等式当,不共线时如图,作则当,共线且同向时若,则去个向量等于加上这个向量的相反向量两个向量的差也可用平行四边形法则及三角形法则求得用平行四边量的相反向量几何意义以为起点,作向量则,如图所示,即可表示从向量终点指向向量终点的向量讲重点向量减法的运算法则向量的减法运算与向量的加法运算是互逆运算,可以灵活转化,减如图所示,是平行四边形的对角线交点,设,求证思维启迪解析法四边形是平行四边形,法二四边形是平行四边形即规定零向量的相反向量仍是零向量任向量与其相反向量的和是零向量,即中分别为中点,求证解析又为相反向量,为相反向量知识点相反向量与长度相等方向相反的向量叫做相反向量,记作对相反向量的把握要注意以下几点与互为相反向量方向是从减向量指向被减向量用三角形法则时,把减向量与被减向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点释疑点非零向量,的差向量的三角不等式当,不共线时如图,作则即用几何法作两个向量的差应注意以下三点当,共线且同向时若,则与,同向如图,于是若,则与,反向如图,于是当,共线且反向时,与同向,与反向于是如图类型向量的加减法运算例化简思维启迪利用向量加减法的定义及相关运算律求解解析法统成加法法二利用法三利用设是平面内任意点,则图形中已知向量与所表示向量的关系,利用向量的加法或减法来进行解析四边形为平行四边形方向是从减向量指向被减向量用三角形法则时,把减向量与被减向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点释疑点非零向量,的差向量的三角不等式当,不共线时如图,作则当,共线且同向时若,则与,同向如图,于是若,则与,反向如图,于是当,共线且反向时,与同向,与反向于是如图类型向量的加减法运算例化简思维启迪利用向量加减法的定义及相关运算律求解解析法统成加法法二利用法三利用
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 29 页
第 2 页 / 共 29 页
第 3 页 / 共 29 页
第 4 页 / 共 29 页
第 5 页 / 共 29 页
第 6 页 / 共 29 页
第 7 页 / 共 29 页
第 8 页 / 共 29 页
第 9 页 / 共 29 页
第 10 页 / 共 29 页
第 11 页 / 共 29 页
第 12 页 / 共 29 页
第 13 页 / 共 29 页
第 14 页 / 共 29 页
第 15 页 / 共 29 页
预览结束,还剩
14 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。