帮帮文库

返回

【ZK76页】高中数学第三章直线与方程学案新人教A版必修2.doc文档完稿 【ZK76页】高中数学第三章直线与方程学案新人教A版必修2.doc文档完稿

格式:word 上传:2025-11-30 23:08:15
倾斜角介于直线与的倾斜角之间,又的倾斜角是,的倾斜角是,直线的倾斜角的取值范围是要使与线段有公共点,则直线的斜率的取值范围是或答案或易错防范本题易地认为,结合图形考虑,的倾斜角应介于直线与直线的倾斜角之间,要特别注意,当的倾斜角小于时,有当的倾斜角大于时,则有如图,过点的直线与直线段相交时,因为过点且与轴垂直的直线的斜率不存在,而所在的直线与线段不相交,所以满足题意的斜率夹在中间,即解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边成功破障已知直线过点且与以,为端点的线段有公共点,求直线的斜率的取值范围解直线的斜率,直线的斜率,要使直线与线段有公共点,的取值范围为,随堂即时演练关于直线的倾斜角和斜率,下列说法正确的是任直线都有倾斜角,都存在斜率倾斜角为的直线的斜率为若条直线的倾斜角为,则它的斜率为直线斜率的取值范围是∞,∞解析选任直线都有倾斜角,但当倾斜角为时,斜率不存在所以倾斜角为的直线的斜率为,所以只有正确已知经过两点,和,的直线的斜率等于,则的值是解析选由斜率公式可得,解之得直线经过原点和则它的倾斜角为解析,因此倾斜角为答案已知三点,在同条直线上,实数的值为解析三点共线即,或答案或已知直线的斜率等于直线的斜率的倍,求的值解由题意直线的斜率存在,即≠,整理得,即,或舍去课时达标检测选择题给出下列说法,正确的个数是若两直线的倾斜角相等,则它们的斜率也定相等条直线的倾斜角为倾斜角为的直线只有条④直线的倾斜角的集合与直线集合建立了对应关系解析选若两直线的倾斜角为,则它们的斜率不存在,错直线倾斜角的取值范围是,错所有垂直于轴的直线倾斜角均为,错不同的直线可以有相同的倾斜角,④错过两点,的直线的倾斜角为,则解析选,即,所以如图,设直线的斜率分别为,则的大小关系为解析选根据斜率越大,直线的倾斜程度越大可知选项正确经过两点,的直线的倾斜角为锐角,则的取值范围是或解析选直线的倾斜角为锐角,斜率,广州高检测如果直线过点且不通过第四象限,那么的斜率的取值范围是解析选过点,的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限二填空题已知,若平面内三点,共线,则解析若平面内三点共线,则,即,整理得,解得,或舍去答案如果直线的倾斜角是,⊥,垂足为,与轴分别相交于点平分,则的倾斜角为解析因为直线的倾斜角为,所以,所以的倾斜角为答案已知实数,满足方程,当时,的取值范围为解析的几何意义是过,两点的直线的斜率,因为点在函数的图象上,且,所以可设该线段为,且由于所以的取值范围是∞,∪,∞答案∞,∪,∞三解答题已知直线过点求直线的斜率和倾斜角的取值范围解设的斜率为,倾斜角为,当时,斜率不存在,当≠时当时此时为锐角当时此时为钝角,所以∈,∈∞,∪,∞已知求直线和的斜率若点在线段包括端点上移动时,求直线点,到直线的距离两平行线分别经过点它们之间的距离满足的条件是解析选当两平行线与垂直时,两平行线间的距离最大为,所以与直线的距离等于的直线方程为或或解析选根据题意可设所求直线方程为因为两直线间的距离等于,所以,解得,或所以所求直线方程为,或直线过点,且与点,的距离最远,那么的方程为解析选由已知可知,是过且与垂直的直线,由点斜式得即若动点,分别在直线和上移动,则的中点到原点距离的最小值是解析选由题意,结合图形可知点必然在直线上,故到原点的最小距离为二填空题直线到直线的距离和原点到直线的距离相等,则直线的方程是解析由题意设所求的方程为,则,解得,故直线的方程为答案直线在轴上的截距为,又有两点,到的距离相等,则的方程为解析显然⊥轴时符合要求,此时的方程为设的斜率为,则的方程为,即点,到的距离相等,的方程为综上,的方程为,或答案或已知直线与直线和的距离相等,则的方程是解析法由题意可设的方程为,于是有,即,解得,则直线的方程为法二由题意知必介于与中间,故设的方程为,则则直线的方程为答案三解答题已知直线经过点且斜率为求直线的方程若直线与平行,且点到直线的距离为,求直线的方程解由直线方程的点斜式,得,整理得所求直线方程为由直线与直线平行,可设直线的方程为,由点到直线的距离公式得,即,解得或,故所求直线方程为或已知正方形边所在直线的方程为,对角线,的交点为求正方形其他三边所在直线的方程解点,到的距离为,则∥,可设点,到的距离也等于,则,又≠即⊥,可设,则,到的距离等于,到的距离,且都等于,或,则,所以,正方形其他三边所在直线方程为直线与方程选择题共小题,每小题分,共分嘉兴高检测点,关于点,的对称点的坐标是,,解析选设由题意得即,已知直线的方程为,则直线的倾斜角为解析选由题意知,故倾斜角为潍坊高期末检测点,到直线的距离为解析选由点到直线的距离公式若直线与直线,分别交于,且线段的中点坐标为则直线的斜率为解析选设则有,故直线的斜率为过点,且平行于直线的直线方程为解析选直线的斜率为,所求直线的方程为,即若直线在轴上的截距为,且它的倾斜角是直线的倾斜角的倍,则解析选依题意得,得,和直线关于轴对称的直线方程为解析选设所求直线上的任点为则此点关于轴对称的点的坐标为因为点,在直线上,所以若三点,在同直线上,则实数等于解析选由题意知即,解得将张坐标纸折叠次,使点,与,重合,则与点,重合的点是解析选由已知知以,和,为端点的线段的垂直平分线的方程为,则,关于直线的对称点即为所求点设所求点为则,解得,设点直线过,且与线段相交,则的斜率的取值范围是,或以上都不对解析选由题意知,由斜率的特点并结合图形可知,或二填空题共小题,每小题分,共分已知点则中,边上的中线长为解析中点为,即所以边上中线长为答案经过点,且在轴上的截距等于在轴上的截距的直线方程是解析当直线过原点时,满足要求,此时直线方程为当直线不过原点时,设直线方程为,由于点,在直线上,所以,此时直线方程为答案或过点,的所有直线中,距离原点最远的直线方程为解析如右图,只有当直线与垂直时,原点到的距离最大,此时,则,所以方程为,即答案已知点,与,关于直线对称,在上有点,使点到直线的距离等于,则点的坐标是解析由题意知线段的中点,故直线的方程为,即设则,解得或即点的坐标是,或,答案,或,三解答题共小题,共分,解答时应写出文字说明证明过程或演算步骤本小题满分分绍兴高二检测已知直线的倾斜角为,且经过点,求直线的方程求点,关于直线的对称点的坐标解即设则解得的坐标为,本小题满分分已知两条直线当为何值时,与相交平行重合解当时,∥当时,与相交当≠且≠时,由得或,由,得故当≠且≠且≠时,与相交当或时,∥当时,与重合本小题满分分如图,已知点是以为底边的等腰三角形,点在直线上求边上的高所在直线的方程求的面积解由题意可知,为的中点,且,所在直线方程为,即由得,⊥,本小题满分分如图所示,在中,边上的高所在直线的方程为,的平分线所在直线的方程为,若点的坐标为求点和点的坐标解由方程组,解得顶点,又的斜率为,且轴是的平分线,故直线的斜率为,所在直线的方程为已知边上的高所在直线的方程为,故的斜率为,所在直线的方程为解方程组,得顶点的坐标为,所以点的坐标为点的坐标为,三维设计高中数学第三章直线与方程学案新人教版必修直线的倾斜角与斜率倾斜角与斜率直线的倾斜角提出问题在平面直角坐标系中,直线经过点问题直线的位置能够确定吗提示不能问题过点可以作与相交的直线多少条提示无数条问题上述问题中的所有直线有什么区别提示倾斜程度不同导入新知倾斜角的定义当直线与轴相交时,取轴作为基准,轴正方向与直线向上方向之间所成的角叫做直线的倾斜角如图所示,直线的倾斜角是,直线的倾斜角是倾斜角的范围直线的倾斜角的取值范围是,并规定与轴平行或重合的直线的倾斜角为倾斜角与直线形状的关系倾斜角直线化解疑难对直线的倾斜角的理解倾斜角定义中含有三个条件轴正向直线向上的方向小于的非负角从运动变化的观点来看,直线的倾斜角是由轴按逆时针方向旋转到与直线重合时所成的角倾斜角是个几何概念,它直观地描述且表现了直线对轴的倾斜程度平面直角坐标系中的每条直线都有个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等倾斜程度不同的直线,其倾斜角不相等直线的斜率提出问题日常生活中,常用坡度坡度升高量前进量表示倾斜程度,例如,进升与进升比较,前者更陡些,因为坡度问题对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度提示可以问题由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量提示可以问题通过坐标比,你会发现它与倾斜角有何关系提示与倾斜角的正切值相等导入新知斜率的定义条直线的倾斜角的正切值叫做这条直线的斜率常用小写字母表示,即斜率公式经过两点,≠的直线的斜率公式为当时,直线没有斜率斜率作用用实数反映了平面直角坐标系内的直线的倾斜程度化解疑难倾斜角与斜率的关系直线都有倾斜角,但并不是所有的直线都有斜率当倾斜角是时,直线的斜率不存在,此时,直线垂直于轴平行于轴或与轴重合直线的斜率也反映了直线相对于轴的正方向的倾斜程度当时,斜率越大,直线的倾斜程度越大当时,斜率越大,直线的倾斜程度也越大斜率公式直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说,如
下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(1)
1 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(2)
2 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(3)
3 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(4)
4 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(5)
5 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(6)
6 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(7)
7 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(8)
8 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(9)
9 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(10)
10 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(11)
11 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(12)
12 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(13)
13 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(14)
14 页 / 共 76
高中数学 第三章 直线与方程学案 新人教A版必修2.doc预览图(15)
15 页 / 共 76
预览结束,还剩 61 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档