是周期函数是它的条对称轴,是它图象的个对称中心当时,它定取最大值其中描述正确当时,当故不成立故成立思想与方法利用转化与化归思想解答抽象函数例题已知函数是定义在上的奇函数,答案解析因为,,所以成立,不成立显然,函数单调递增,即故成立当时,上述结论中正确结论的序号是,则,南方新课堂年高考数学总复习第二章函数导数及其应用第讲抽象函数课件理.文档免费在线阅读若,则考点正比例函数型抽象函数例设函数对任的定义域为,并且对任意正数,都有若,则考点正比例函数型抽象函数例设函数对任意,,都有,且当时,求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理由令,则有即是奇函数解当时,有最值,理由如下任取⇒在上为减函数因此为函数的最小值,为函数的最大值,求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理的定义域为,并且对任意正数,都有时,有最值,理由如下任取⇒在函数的最大值为,最小值为证明令,则有⇒规律方法由令,则有即是奇函数解当,又,,得是上的增函数,的取值范围是,利用赋值法解决抽时,恒有证明设,则,得到函数是增函数互动探究对于函数定义域中任意的,,有如下结论确结论的序号是,则函数的最大值为,最小值为证明令,则有⇒规律方法由令,则有即是奇函数解当求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理为偶函数,不妨设,显然错误,显然正确,而有可能不正确,因为函数且为偶函数,对于函数有下列几种描述是周期函数是它的条对称轴,是它图象的个对称中心当时,它定取最大值其中描述正实例也满足条件,而不成立第讲抽象函数了解函数模型的实际背景会运用函数的解析式理解是奇函数非奇非偶函数偶函数不确定解析令,则,因抽象函数的类型正比例函数型对数函数型指数函数型等价形式实例也满足条件,而不成立第讲抽象函数了解函数模型的实际背景会运用函数的解析式理解和研究函数的性质抽象函数解析式的是答案解析已知函数是定义在上的奇函数,且为偶函数,不妨设,显然错误,显然正确,而有可能不正确,因为函数且为偶函数,对于函数有下列几种描述是周期函数是它的条对称轴,是它图象的个对称中心当时,它定取最大值其中描述正确当时,当故不成立故成立思想与方法利用转化与化归思想解答抽象函数例题已知函数是定义在上的奇函数,答案解析因为,,所以成立,不成立显然,函数单调递增,即故成为,则的值为已知函数的定义域为,并且对任意正数,都有若,则为,则的值为已知函数的定义域为,并且对任意正数,都有若,则为,则的值为已知函数的定义域为,并且对任意正数,都有若,则所以令,则,故选函数满足,若,则若是定义在上的奇函数,它的最小正周期已知,且,则是奇函数非奇非偶函数偶函数不确定解析令,则,因抽象函数的类型正比例函数型对数函数型指数函数型等价形式实例也满足条件,而不成立第讲抽象函数了解函数模型的实际背景会运用函数的解析式理解和研究函数的性质抽象函数解析式的是答案解析已知函数是定义在上的奇函数,且为偶函数,不妨设,显然错误,显然正确,而有可能不正确,因为函数且为偶函数,对于函数有下列几种描述是周期函数是它的条对称轴,是它图象的个对称中心当时,它定取最大值其中描述正确当时,当故不成立故成立思想与方法利用转化与化归思想解答抽象函数例题已知函数是定义在上的奇函数,答案解析因为,,所以成立,不成立显然,函数单调递增,即故成立当时,上述结论中正确结论的序号是,则,得到函数是增函数互动探究对于函数定义域中任意的,,有如下结论是上的增函数解由,得是上的增函数,的取值范围是,利用赋值法解决抽时,恒有证明设,则,又,为减函数因此为函数的最小值,为函数的最大值,函数的最大值为,最小值为证明令,则有⇒规律方法由令,则有即是奇函数解当时,有最值,理由如下任取⇒在上任意,,都有,且当时,求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理的定义域为,并且对任意正数,都有若,则考点正比例函数型抽象函数例设函数对任的定义域为,并且对任意正数,都有若,则考点正比例函数型抽象函数例设函数对任意,,都有,且当时,求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理由令,则有即是奇函数解当时,有最值,理由如下任取⇒在上为减函数因此为函数的最小值,为函数的最大值,函数的最大值为,最小值为证明令,则有⇒规律方法利用赋值法解决抽时,恒有证明设,则,又,是上的增函数解由,得是上的增函数,的取值范围是,则,得到函数是增函数互动探究对于函数定义域中任意的,,有如下结论当时,上述结论中正确结论的序号是答案解析因为,,所以成立,不成立显然,函数单调递增,即故成立当时,当故不成立故成立思想与方法利用转化与化归思想解答抽象函数例题已知函数是定义在上的奇函数,且为偶函数,对于函数有下列几种描述是周期函数是它的条对称轴,是它图象的个对称中心当时,它定取最大值其中描述正确的是答案解析已知函数是定义在上的奇函数,且为偶函数,不妨设,显然错误,显然正确,而有可能不正确,因为函数也满足条件,而不成立第讲抽象函数了解函数模型的实际背景会运用函数的解析式理解和研究函数的性质抽象函数解析式抽象函数的类型正比例函数型对数函数型指数函数型等价形式实例已知,且,则是奇函数非奇非偶函数偶函数不确定解析令,则,因,所以令,则,故选函数满足,若,则若是定义在上的奇函数,它的最小正周期为,则的值为已知函数的定义域为,并且对任意正数,都有若,则考点正比例函数型抽象函数例设函数对任意,,都有,且当时,求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理由令,则有即是奇函数解当时,有最值,理由如下任取⇒在上为减函数因此为函数的最小值,为函数的最大值,函数的最大值为,最小值为证明令,则有⇒规律方法任意,,都有,且当时,求证是奇函数试问在时,是否有最值如果有,求出最值如果没有,说出理为减函数因此为函数的最小值,为函数的最大值,函数的最大值为,最小值为证明令,则有⇒规律方法是上的增函数解由,得是上的增函数,的取值范围是,当时,上述结论中正确结论的序号是当时,当故不成立故成立思想与方法利用转化与化归思想解答抽象函数例题已知函数是定义在上的奇函数,的是答案解析已知函数是定义在上的奇函数,且为偶函数,不妨设,显然错误,显然正确,而有可能不正确,因为函数抽象函数的类型正比例函数型对数函数型指数函数型等价形式实例所以令,则,故选函数满足,若,则若是定义在上的奇函数,它的最小正周期
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 23 页
第 2 页 / 共 23 页
第 3 页 / 共 23 页
第 4 页 / 共 23 页
第 5 页 / 共 23 页
第 6 页 / 共 23 页
第 7 页 / 共 23 页
第 8 页 / 共 23 页
第 9 页 / 共 23 页
第 10 页 / 共 23 页
第 11 页 / 共 23 页
第 12 页 / 共 23 页
第 13 页 / 共 23 页
第 14 页 / 共 23 页
第 15 页 / 共 23 页
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。