以下同解法规律技巧平面向量共线的两种形式可根据条件灵活选用变式训练已知向量且三点共线,求解解法,当时,当时,与平行,且方向相反解法由解法知,,负可确定向量的方向解解法,当与平行时,存在唯实数,使三点共线由向量共线求参数二例已知当为何值时,与平行平行时它们是同向还是反向分析应用向量平行共线的定理,由的正负或坐标的值的名师号新课标学年高中数学第二章平面向量平面向量共线的坐标表示课件新人教版必修.文档免费在线阅读,即两向量共线的条件为相应坐标成比例三点共线问题设证明量平行故对任意向量有⇔当时,⇔,即两向量共线的条件为相应坐标成比例三点共线问题设证明三点共线的常用方法几何法向量法坐标法利用的条件课堂互动探究剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析判定,只要把点的坐标代入公式,看是否成立,有两种情况与共线其中只有种情况成立典例剖析解坐标法利用的条件课堂互动探究量平行故对任意向量有⇔当时,⇔平行吗直线与直线平行吗分析判定,只要把点的坐标代入公式解误认为,就是,忽略,四点共线变式训练若剖析归纳触类旁通共线的判定例已知点向量与,又,有公共与平行平行时它们是同向还是反向分析应用向量平行共线的定理,由的正负或坐标的值的正求证三点共线证明存在唯实数,使,方向相反解法由解法知,,负可确定向量的方向解解法,当与平行时,解误认为,就是,忽略,四点共线变式训练若剖析归纳触类旁通共线的判定例已知点向量与坐标法利用的条件课堂互动探究应用向量共线的坐标表示解决相关问题课前热身平面向量共线的坐标表示设其中,第二章平面向量平面向量的基本定理及坐标表示平面向量共线已知由成立,可判断与共线反之,若与共线,则它们的,当且仅当时,自我校对思考探究当两个非零向量共线时,通过坐标有⇔当时,⇔,即两向量共线的条件为相应坐标成比例零时,反向例如向量,与,反向向量,与,同向名师点拨对向量共线条件的理解已知由成立,可判断与共线反之,若与共线,则它们的,当且仅当时,自我校对思考探究当两个非零向量共线时,通过坐标如何判断它们是同向还是反向提示当两个向量的对应坐标同号或同为零时,同向当两个向量的对应坐标异号或同为坐标表示课前预习目标课堂互动探究课前预习目标梳理知识夯实基础学习目标掌握两个向量共线的坐标表示能够应用向量共线的坐标表示解决相关问题课前热身平面向量共线的坐标表示设其中,第二章平面向量平面向量的基本定理及坐标表示平面向量共线的,三点共线解法三点共线,以下同解法规律技巧平面向量共线的两种形式可根据条件灵活选用变式训练已知向量且三点共线,求解解法利用的条件课堂互动探究剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析利用的条件课堂互动探究剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析利用的条件课堂互动探究剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析三点共线问题设证明三点共线的常用方法几何法向量法坐标法坐标满足在讨论向量共线时,规定零向量与任向量平行故对任意向量有⇔当时,⇔,即两向量共线的条件为相应坐标成比例零时,反向例如向量,与,反向向量,与,同向名师点拨对向量共线条件的理解已知由成立,可判断与共线反之,若与共线,则它们的,当且仅当时,自我校对思考探究当两个非零向量共线时,通过坐标如何判断它们是同向还是反向提示当两个向量的对应坐标同号或同为零时,同向当两个向量的对应坐标异号或同为坐标表示课前预习目标课堂互动探究课前预习目标梳理知识夯实基础学习目标掌握两个向量共线的坐标表示能够应用向量共线的坐标表示解决相关问题课前热身平面向量共线的坐标表示设其中,第二章平面向量平面向量的基本定理及坐标表示平面向量共线的,三点共线解法三点共线,以下同解法规律技巧平面向量共线的两种形式可根据条件灵活选用变式训练已知向量且三点共线,求解解法,当时,当时,与平行,且方向相反解法由解法知,,负可确定向量的方向解解法,当与平行时,存在唯实数,使三点共线由向量共线求参数二例已知当为何值时,与平行平行时它们是同向还是反向分析应用向量平行共线的定理,由的正负或坐标的值的正求证三点共线证明,又,有公共点看是否成立,有两种情况与共线其中只有种情况成立典例剖析解误认为,就是,忽略,四点共线变式训练若剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析判定,只要把点的坐标代入公式,明三点共线的常用方法几何法向量法坐标法利用的条件课堂互动探究量平行故对任意向量有⇔当时,⇔,即两向量共线的条件为相应坐标成比例三点共线问题设证明量平行故对任意向量有⇔当时,⇔,即两向量共线的条件为相应坐标成比例三点共线问题设证明三点共线的常用方法几何法向量法坐标法利用的条件课堂互动探究剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析判定,只要把点的坐标代入公式,看是否成立,有两种情况与共线其中只有种情况成立典例剖析解误认为,就是,忽略,四点共线变式训练若求证三点共线证明,又,有公共点,三点共线由向量共线求参数二例已知当为何值时,与平行平行时它们是同向还是反向分析应用向量平行共线的定理,由的正负或坐标的值的正负可确定向量的方向解解法,当与平行时,存在唯实数,使当时,当时,与平行,且方向相反解法由解法知,,以下同解法规律技巧平面向量共线的两种形式可根据条件灵活选用变式训练已知向量且三点共线,求解解法,三点共线解法三点共线,,第二章平面向量平面向量的基本定理及坐标表示平面向量共线的坐标表示课前预习目标课堂互动探究课前预习目标梳理知识夯实基础学习目标掌握两个向量共线的坐标表示能够应用向量共线的坐标表示解决相关问题课前热身平面向量共线的坐标表示设其中,当且仅当时,自我校对思考探究当两个非零向量共线时,通过坐标如何判断它们是同向还是反向提示当两个向量的对应坐标同号或同为零时,同向当两个向量的对应坐标异号或同为零时,反向例如向量,与,反向向量,与,同向名师点拨对向量共线条件的理解已知由成立,可判断与共线反之,若与共线,则它们的坐标满足在讨论向量共线时,规定零向量与任向量平行故对任意向量有⇔当时,⇔,即两向量共线的条件为相应坐标成比例三点共线问题设证明三点共线的常用方法几何法向量法坐标法利用的条件课堂互动探究剖析归纳触类旁通共线的判定例已知点向量与平行吗直线与直线平行吗分析判定,只要把点的坐标代入公式,看是否成立,有两种情况与共线其中只有种情况成立典例剖析解明三点共线的常用方法几何法向量法坐标法利用的条件课堂互动探究看是否成立,有两种情况与共线其中只有种情况成立典例剖析解误认为,就是,忽略,四点共线变式训练若,三点共线由向量共线求参数二例已知当为何值时,与平行平行时它们是同向还是反向分析应用向量平行共线的定理,由的正负或坐标的值的正,当时,当时,与平行,且方向相反解法由解法知,三点共线解法三点共线,坐标表示课前预习目标课堂互动探究课前预习目标梳理知识夯实基础学习目标掌握两个向量共线的坐标表示能够应用向量共线的坐标表示解决相关问题课前热身平面向量共线的坐标表示设其中零时,反向例如向量,与,反向向量,与,同向名师点拨对向量共线条件的理解已知由成立,可判断与共线反之,若与共线,则它们的三点共线问题设证明三点共线的常用方法几何法向量法坐标法
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
第 1 页 / 共 41 页
第 2 页 / 共 41 页
第 3 页 / 共 41 页
第 4 页 / 共 41 页
第 5 页 / 共 41 页
第 6 页 / 共 41 页
第 7 页 / 共 41 页
第 8 页 / 共 41 页
第 9 页 / 共 41 页
第 10 页 / 共 41 页
第 11 页 / 共 41 页
第 12 页 / 共 41 页
第 13 页 / 共 41 页
第 14 页 / 共 41 页
第 15 页 / 共 41 页
预览结束,还剩
26 页未读
阅读全文需用电脑访问
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。
1、该PPT不包含附件(如视频、讲稿),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。